
Lecture 14

Nonlinear Problems

Grid Search and Monte Carlo Methods 



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Discuss two important issues related to probability

Introduce linearizing transformations

Introduce the Grid Search Method

Introduce the Monte Carlo Method



Part 1

two issue related to probability

not limited to nonlinear problems

but

they tend to arise there a lot



issue #1

distribution of the data matters



d(z) vs. z(d)
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d(z)
d are Gaussian distributed

z are error free

z(d)
z are Gaussian distributed

d are error free



d(z)
d are Gaussian distributed

z are error free

z(d)
z are Gaussian distributed

d are error free

not the same



lesson learned

you must properly account for how the noise is 

distributed



issue #2

mean and maximum likelihood point 

can change under reparameterization



consider the non-linear 

transformation

m’=m2

with

p(m) uniform on (0,1)
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Calculation of Expectations



although

m’=m2

<m’> ≠ <m>2



right way

wrong way



Part 2

linearizing transformations



Non-Linear Inverse Problem

d = g(m)

transformation
d→d’

m→m’

d’ = Gm’
Linear Inverse Problem

solve with least-squares



Non-Linear Inverse Problem

d = g(m)

transformation
d→d’

m→m’

d’ = Gm’
Linear Inverse Problem

solve with least-squares



an example

log(di) = log(m1) + m2 zi

d’i=log(di)
m’1=log(m1)

m’2=m2

di = m1 exp ( m2 zi )

di’ =m’1+ m’2 zi
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again

measurement error is being treated 

inconsistently

if d is Gaussian-distributed

then d’ is not

so why are we using least-squares?



we should really use a technique 

appropriate for the new error ...

... but then a linearizing

transformation is not really much 

of a simplification



non-uniqueness



consider

di = m1
2 + m1m2 zi



linearizing transformation

m’1= m1
2 and  m’2=m1m2

di = m’1 + m’2 zi

consider

di = m1
2 + m1m2 zi



linearizing transformation

m’1= m1
2 and  m’2=m1m2

di = m’1 + m’2 zi

consider

di = m1
2 + m1m2 zi

but actually the problem is nonunique
if m is a solution, so is –m

a fact that can easily be overlooked when focusing on
the transformed problem



linear Gaussian problems have well-

understood non-uniqueness

The error E(m) is always a multi-dimensioanl
quadratic

But E(m) can be constant in some directions in 
model space (the null space).  Then the problem is 
non-unique.

If non-unique, there are an infinite number of 
solutions, each with a different combination of 
null vectors.
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a nonlinear Gaussian problems can 

be non-unique in a variety of ways
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Part 3

the grid search method



sample inverse problem

di(xi) = sin(ω0m1xi) + m1m2

with ω0=20

true solution

m1= 1.21, m2 =1.54

N=40 noisy data
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strategy

compute the error on a multi-dimensional grid in 

model space

choose the grid point with the smallest error as 

the estimate of the solution
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to be effective

The total number of model parameters are small, say M<7.  
The grid is M-dimensional, so the number of trial solution is 
proportional to LM, where L is the number of trial solutions 
along each dimension of the grid.

The solution is known to lie within a specific range of values, 
which can be used to define the limits of the grid.

The forward problem d=g(m) can be computed rapidly enough 
that the time needed to compute LM of them is not 
prohibitive.

The error function E(m) is smooth over the scale of the grid 
spacing, Δm, so that the minimum is not missed through the 
grid spacing being too coarse.



MatLab

% 2D grid of m’s

L = 101;

Dm = 0.02;

m1min=0;

m2min=0;

m1a = m1min+Dm*[0:L-1]';

m2a = m2min+Dm*[0:L-1]';

m1max = m1a(L);

m2max = m2a(L);



% grid search, compute error, E

E = zeros(L,L);

for j = [1:L]

for k = [1:L]

dpre=sin(w0*m1a(j)*x)+m1a(j)*m2a(k);

E(j,k) = (dobs-dpre)'*(dobs-dpre);

end

end



% find the minimum value of E

[Erowmins, rowindices] = min(E);

[Emin, colindex] = min(Erowmins);

rowindex = rowindices(colindex);

m1est = m1min+Dm*(rowindex-1);

m2est = m2min+Dm*(colindex-1);



Definition of Error

for non-Gaussian statistcis

Gaussian p.d.f.:  E=σd
-2||e||2

2

but since
p(d) ∝ exp(-½E)

and
L=log(p(d))=c-½E

E = 2(c – L) → -2L
since constant does not affect location

of minimum

in non-Gaussian cases:

define the error in terms of the likelihood L
E =– 2L



Part 4

the Monte Carlo method



strategy

compute the error at randomly generated points 

in model space

choose the point with the smallest error as the 

estimate of the solution
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advantages over a grid search

doesn’t require a specific decision about grid 

model space interrogated uniformly so

process can be stopped when acceptable

error is encountered

process is open ended, can be continued

as long as desired



disadvantages

might require more time to generate a point in 

model space

results different every time; subject to “bad luck”



MatLab

% initial guess and corresponding error

mg=[1,1]';

dg = sin(w0*mg(1)*x) + mg(1)*mg(2);

Eg = (dobs-dg)'*(dobs-dg);



ma = zeros(2,1);

for k = [1:Niter]

% randomly generate a solution

ma(1) = random('unif',m1min,m1max);

ma(2) = random('unif',m2min,m2max);

% compute its error

da = sin(w0*ma(1)*x) + ma(1)*ma(2);

Ea = (dobs-da)'*(dobs-da);

% adopt it if its better

if( Ea < Eg )

mg=ma;

Eg=Ea;

end

end


