
Lecture 15

Nonlinear Problems

Newton’s Method 



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Introduce Newton’s Method

Generalize it to an Implicit Theory

Introduce the Gradient Method



Part 1

Newton’s Method



grid search

Monte Carlo Method

are completely undirected

alternative

take directions from the

local properties

of the error function E(m)



Newton’s Method

start with a guess m(p)

near m(p) , approximate E(m) as a parabola and 

find its minimum

set new guess to this value and iterate
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Taylor Series Approximation for E(m)

expand E around a point m(p)



differentiate and set result to zero to find minimum



relate b and B to g(m)

linearized

data kernel



formula for approximate solution



relate b and B to g(m)

very reminiscent

of least squares



what do you do if you can’t 

analytically differentiate g(m) ?

use finite differences to numerically 
differentiate 

g(m)

or

E(m)



first derivative



first derivative

vector
Δm [0, ..., 0, 1, 0, ..., 0]T

need to evaluate E(m) M+1 times



second derivative

need to evaluate E(m) about ½M2 times



what can go wrong?

convergence to a local minimum
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analytically differentiate
sample inverse problem

di(xi) = sin(ω0m1xi) + m1m2
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often, the convergence is very rapid



often, the convergence is very rapid

but

sometimes the solution converges to a local minimum

and

sometimes it even diverges



mg = [1, 1]’;

G = zeros(N,M);

for k = [1:Niter]

dg = sin( w0*mg(1)*x) + mg(1)*mg(2);

dd = dobs-dg;

Eg=dd'*dd;

G = zeros(N,2);

G(:,1) = w0*x.*cos(w0*mg(1)*x) + mg(2);

G(:,2) = mg(2)*ones(N,1);

% least squares solution

dm = (G'*G)\(G'*dd);

% update

mg = mg+dm;

end



Part 2

Newton’s Method for an

Implicit Theory



Implicit Theory

f(d,m)=0

with Gaussian

prediction error

and

a priori information about m



to simplify algebra

group d, m into a vector x
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represent data and a priori model 

parameters as a Gaussian p(x)

f(x)=0 defines a surface in the space of x

maximize p(x) on this surface

maximum likelihood point is xest
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can get local maxima if f(x) is

very non-linear
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mathematical statement of the problem

its solution (using Lagrange Multipliers)

with Fij = ∂fi/∂xj



mathematical statement of the problem

its solution (using Lagrange Multipliers)

reminiscent of

minimum length solution



mathematical statement of the problem

its solution (using Lagrange Multipliers)

oops!

x appears in 3 places



solution

iterate !

new value for x
is x(p+1)

old value for x
is x(p)



special case of an explicit theory

f(x) = d-g(m)

equivalent to solving

using simple least squares



special case of an explicit theory

f(x) = d-g(m)

weighted least squares generalized inverse

with a linearized data kernel



special case of an explicit theory

f(x) = d-g(m)

Newton’s Method, but making E+L small

not just E small



Part 3

The Gradient Method



What if you can compute

E(m) and ∂E/∂mp

but you can’t compute

∂g/∂mp or ∂2E/∂mp∂ mq



mn
est mGM

E(m)



mn
est mGM

E(m)

you know the direction

towards the minimum

but not how far away it is



unit vector pointing towards the minimum

so improved solution would be 

if we knew how big to make α



Armijo’s rule

provides an acceptance criterion for α

with c≈10-4

simple strategy
start with a largish α

divide it by 2 whenever it fails Armijo’s Rule 
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% error and its gradient at the trial solution

mgo=[1,1]';

ygo = sin( w0*mgo(1)*x) + mgo(1)*mgo(2);

Ego = (ygo-y)'*(ygo-y);

dydmo = zeros(N,2);

dydmo(:,1) = w0*x.*cos(w0*mgo(1)*x) + mgo(2);

dydmo(:,2) = mgo(2)*ones(N,1);

dEdmo = 2*dydmo'*(ygo-y);

alpha = 0.05;

c1 = 0.0001;

tau = 0.5;

Niter=500;

for k = [1:Niter]

v = -dEdmo / sqrt(dEdmo'*dEdmo);



% backstep

for kk=[1:10]

mg = mgo+alpha*v;

yg = sin(w0*mg(1)*x)+mg(1)*mg(2);

Eg = (yg-y)'*(yg-y);

dydm = zeros(N,2);

dydm(:,1) = w0*x.*cos(w0*mg(1)*x)+ mg(2);

dydm(:,2) = mg(2)*ones(N,1);

dEdm = 2*dydm'*(yg-y);

if( (Eg<=(Ego + c1*alpha*v'*dEdmo)) )

break;

end

alpha = tau*alpha;

end



% change in solution

Dmg = sqrt( (mg-mgo)'*(mg-mgo) );

% update

mgo=mg;

ygo = yg;

Ego = Eg;

dydmo = dydm;

dEdmo = dEdm;

if( Dmg < 1.0e-6 )

break;

end

end



often, the convergence is reasonably 

rapid



often, the convergence is reasonably 

rapid

exception

when the minimum is in along a long shallow valley


