Lecture 16

Nonlinear Problems:

Simulated Annealing and Bootstrap Confidence Intervals

Syllabus

Lecture 01 Describing Inverse Problems Probability and Measurement Error, Part 1 Lecture 02 Probability and Measurement Error, Part 2 Lecture 03 Lecture 04 The L₂ Norm and Simple Least Squares A Priori Information and Weighted Least Squared Lecture 05 **Resolution and Generalized Inverses** Lecture 06 Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance Lecture 08 The Principle of Maximum Likelihood Lecture 09 **Inexact Theories** Lecture 10 Nonuniqueness and Localized Averages Vector Spaces and Singular Value Decomposition Lecture 11 Lecture 12 Equality and Inequality Constraints Lecture 13 L_1 , L_{∞} Norm Problems and Linear Programming Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches Nonlinear Problems: Newton's Method Lecture 15 Lecture 16 **Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals** Lecture 17 **Factor Analysis** Varimax Factors, Empircal Orthogonal Functions Lecture 18 Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon's Problem Lecture 20 Linear Operators and Their Adjoints Lecture 21 Fréchet Derivatives Lecture 22 Exemplary Inverse Problems, incl. Filter Design Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

Introduce Simulated Annealing

Introduce the Bootstrap Method for computing Confidence Intervals

Part 1

Simulated Annealing

Monte Carlo Method completely undirected

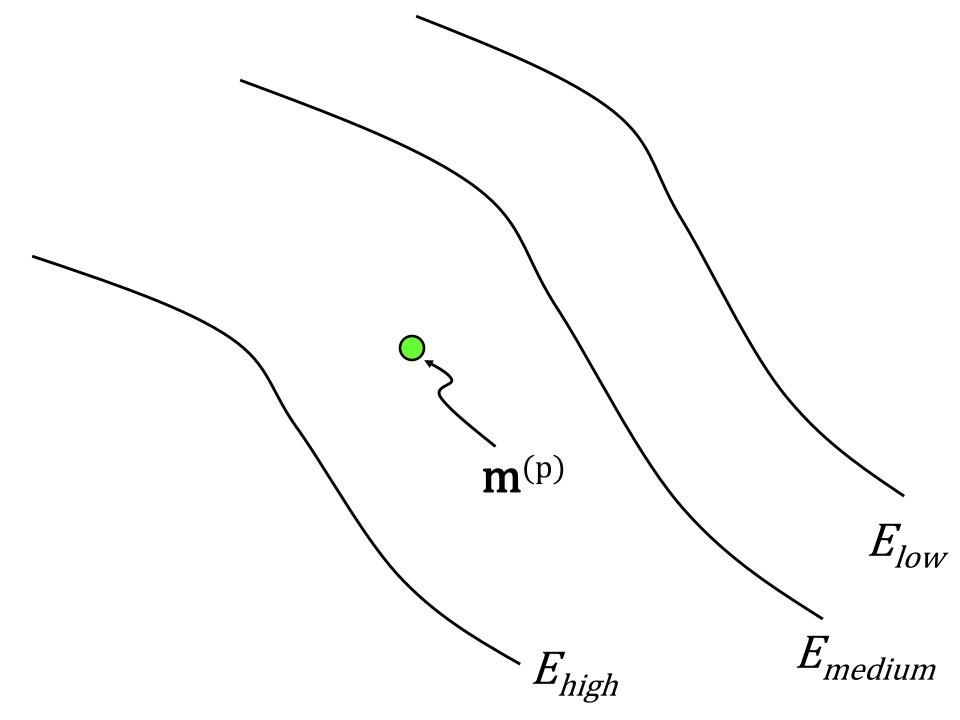
Newton's Method completely directed

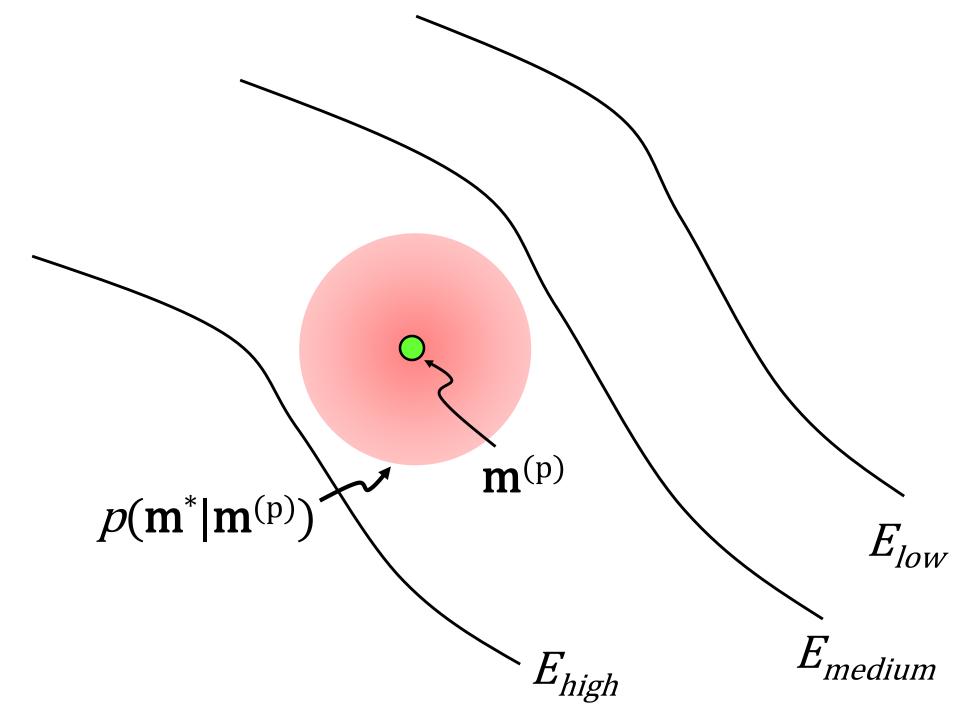
Monte Carlo Method completely undirected slow, but foolproof

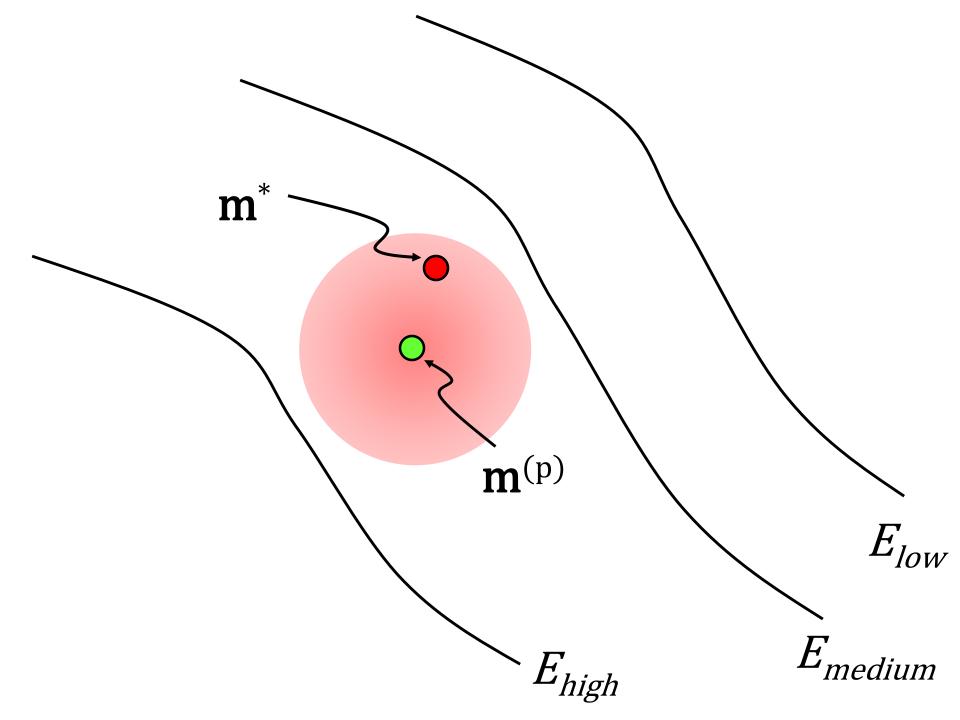
Newton's Method completely directed fast, but can fall into local minimum

compromise

partially-directed random walk







acceptance of \mathbf{m}^* as $\mathbf{m}^{(p+1)}$

always accept in error is smaller

accept with probability

$$\exp\left\{-\frac{\left[E\left(\mathbf{m}^{*}\right)-E\left(\mathbf{m}^{\left(p\right)}\right)\right]}{T}\right\}$$

large
$$T$$

$$\exp\left\{-\frac{\left[E\left(\mathbf{m}^{*}\right)-E\left(\mathbf{m}^{(p)}\right)\right]}{T}\right\} \longrightarrow 1$$

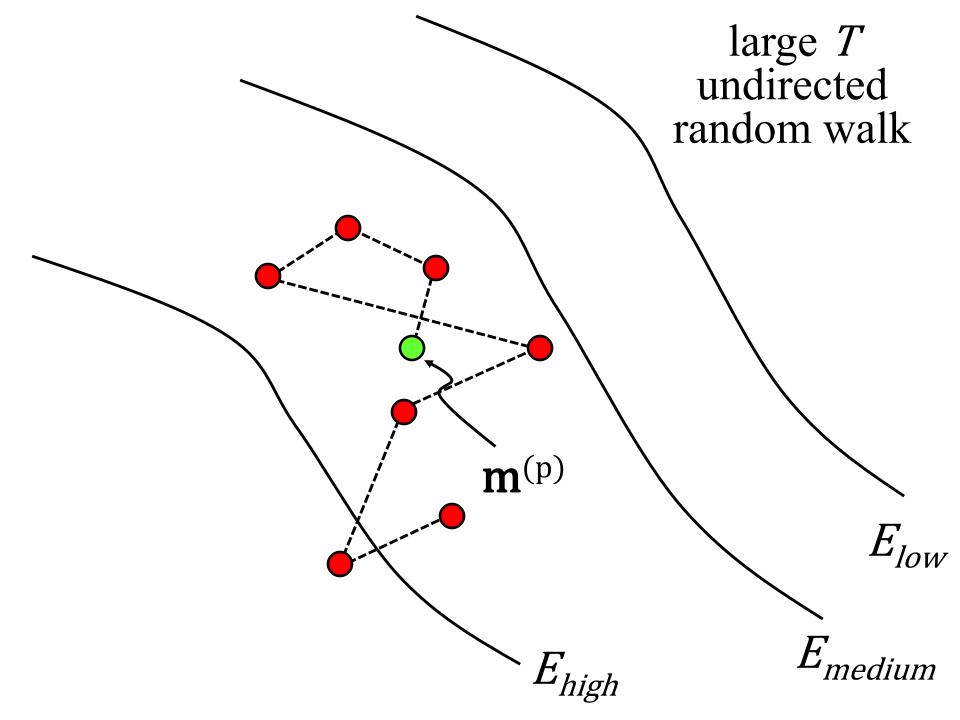
always accept **m**^{*} (undirected random walk) ignores the error completely

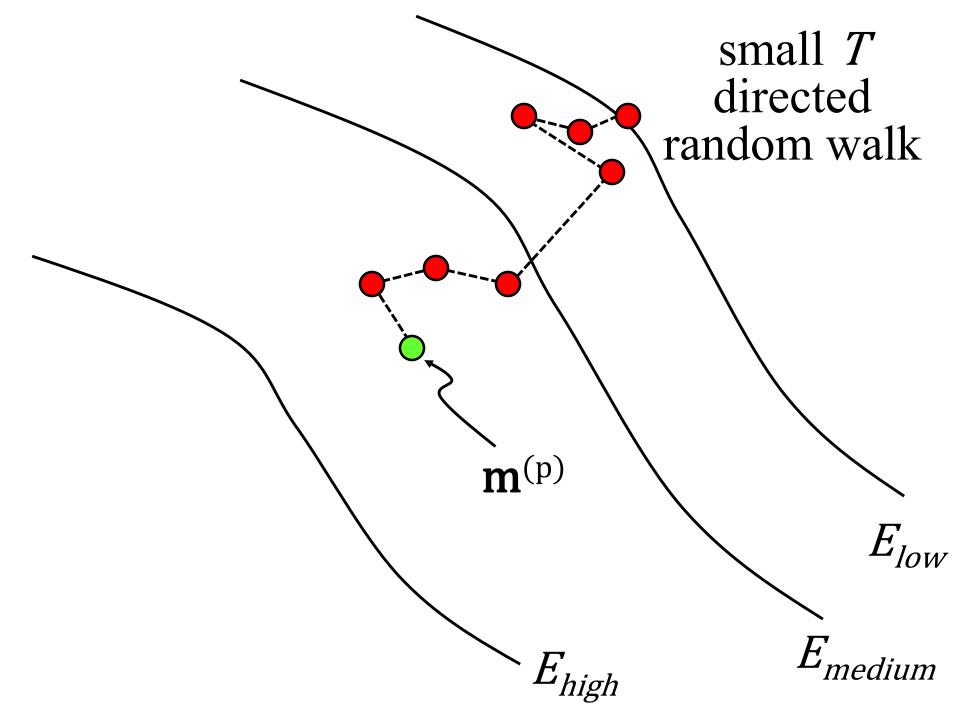
small T $\exp\left\{-\frac{\left[E(\mathbf{m}^*) - E(\mathbf{m}^{(p)})\right]}{T}\right\} \longrightarrow \mathbf{0}$

accept **m**^{*} only when error is smaller (directed random walk) strictly decreases the error

intermediate T

most iterations decrease the error but occasionally allow an **m*** that increases it





strategy

start off with large T undirected similar to Monte Carlo method (except more "local")

slowly decrease T during iterations directed similar to Newton's method (except precise gradient direction not used)

strategy

start off with large T more random

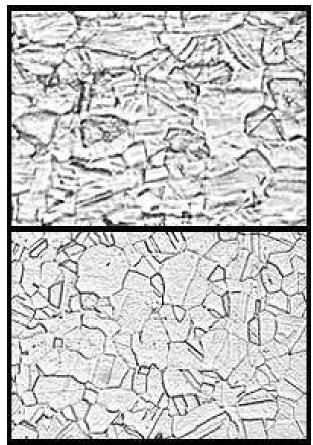
slowly decrease T during iterations more directed

claim is that this strategy helps achieve the global minimum

analogous to annealing of metals

high temperatures atoms randomly moving about due to thermal motions

as temperature decreases atoms slowly find themselves in a minimum energy configuration orderly arrangement of a "crystal"



www.sti-laser.com/technology/heat_treatments.html

analogous to annealing of metals

high temperatures atoms randomly moving about due to thermal motions

as temperature decreases atoms slowly find themselves in a minimum energy configuration orderly arrangement of a "crystal" hence "simulated annealing" and *T* called "temperature"

this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.

$$p(\mathbf{m}) \propto \exp\left\{\frac{-E(\mathbf{m})}{T}\right\}$$

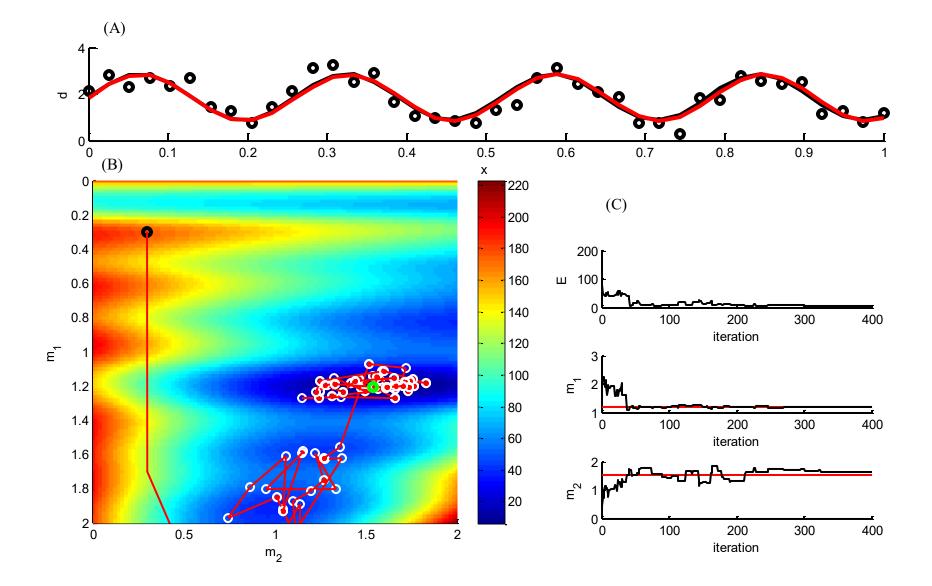
this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.

$$p(\mathbf{m}) \propto \exp\left\{\frac{-E(\mathbf{m})}{T}\right\}$$

sampling a distribution that starts out wide and blurry but sharpens up as T is decreases



```
for k = [1:Niter]
T = 0.1 * Eg0 * ((Niter-k+1)/Niter)^2;
```

```
ma(1) = random('Normal',mg(1),Dm);
ma(2) = random('Normal',mg(2),Dm);
da = sin(w0*ma(1)*x) + ma(1)*ma(2);
Ea = (dobs-da)'*(dobs-da);
```

```
if( Ea < Eg )
    mg=ma;
    Eg=Ea;
    p1his(k+1)=1;</pre>
```

```
else
```

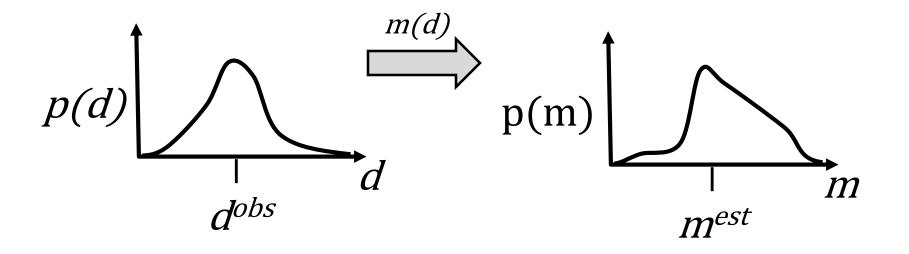
```
p1 = exp( -(Ea-Eg)/T );
p2 = random('unif',0,1);
if( p1 > p2 )
    mg=ma;
    Eg=Ea;
end
end
```

Part 2

Bootstrap Method

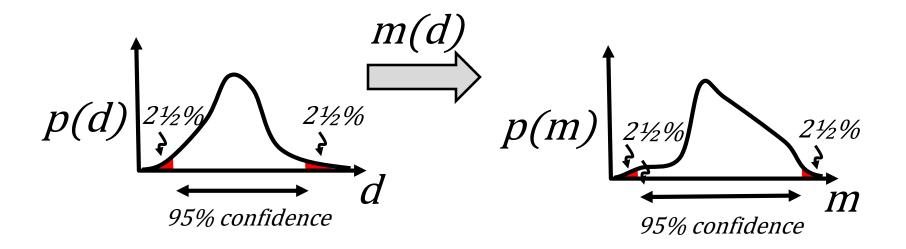
theory of confidence intervals

error is the data result in errors in the estimated model parameters



theory of confidence intervals

error is the data result in errors in the estimated model parameters



Gaussian linear theory $\mathbf{d} = \mathbf{G}\mathbf{m}$ $\mathbf{m} = \mathbf{G}^{-g}\mathbf{d}$

standard error propagation $[cov m] = G^{-g} [cov d] G^{-gT}$

univariate Gaussian distribution has 95% of error within two σ of its mean

What to do with Gaussian nonlinear theory?

One possibility linearize theory and use standard error propagation

d = g(m)m-m^(p) ≈ G_(p)^{-g} [d-g(m^(p))] [cov m] ≈ G_(p)^{-g} [cov d] G_(p)^{-g}

disadvantages unknown accuracy and need to compute gradient of theory $G_{(p)}$

G_(p) not computed when using some solution methods

alternative confidence intervals with repeat datasets

do the whole experiment many times

use results of each experiment to make compute **m**^{est} create histograms from many **m**^{est}'s

derive empirical 95% confidence intervals from histograms

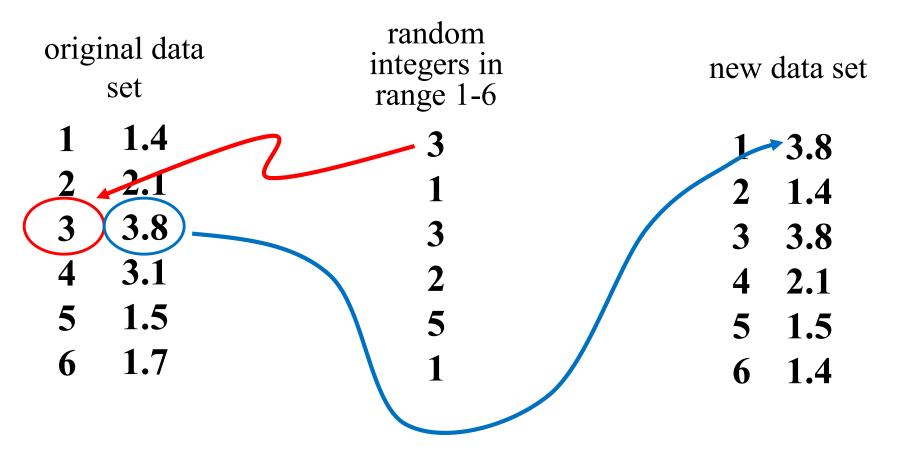
Bootstrap Method

create approximate repeat datasets by randomly resampling (with duplications) the one existing data set

example of resampling

original data set		random integers in range 1-6	resampled data set
1	1.4	3	1 3.8
2	2.1	1	2 1.4
3	3.8	3	3 3.8
4	3.1	2	4 2.1
5	1.5	5	5 1.5
6	1.7	1	6 1.4

example of resampling



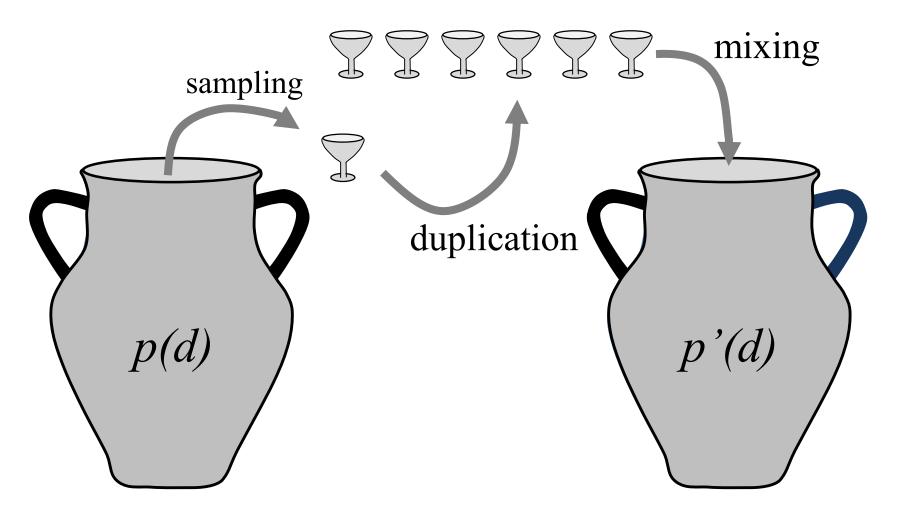
example of resampling

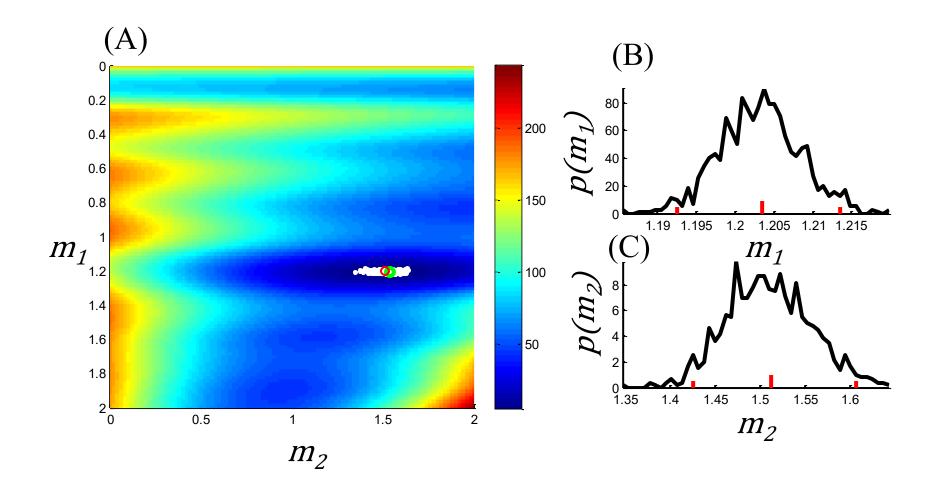
original data set	random integers in range 1-6	resampled data set
1 1.4	3	1 3.8
2 2.1	1	2 (1.4)
3 3.8	3	3 3.8
4 3.1	2	4 2.1
5 1.5	5	5 1.5
6 1.7	1	6 (1.4)

note repeats

- rowindex = unidrnd(N,N,1);
- xresampled = x(rowindex);
- dresampled = dobs(rowindex);

interpretation of resampling





Nbins=50; mlhmin=min(mlsave); mlhmax=max(mlsave); Dmlbins = (mlhmax-mlhmin) / (Nbins-1); mlbins=mlhmin+Dmlbins*[0:Nbins-1]'; mlhist = hist(mlsave,mlbins); pm1 = m1hist/(Dm1bins*sum(m1hist)); Pm1 = Dm1bins*cumsum(pm1); mllow=mlbins(find(Pm1>0.025,1)); mlhigh=mlbins(find(Pm1>0.975,1));

Nbins=50; mlhmin=min(mlsave); mlhmax=max(mlsave); Dmlbins = (mlhmax-mlhmin) / (Nbins-1); mlbins=mlhmin+Dmlbins*[0:Nbins-1]'; mlhist = hist(mlsave,mlbins); histogram pm1 = m1hist/(Dm1bins*sum(m1hist)); Pm1 = Dm1bins*cumsum(pm1); mllow=mlbins(find(Pm1>0.025,1)); mlhigh=mlbins(find(Pm1>0.975,1));

Nbins=50; mlhmin=min(mlsave); mlhmax=max(mlsave); Dmlbins = (mlhmax-mlhmin) / (Nbins-1); mlbins=mlhmin+Dmlbins*[0:Nbins-1]'; mlhist = hist(mlsave,mlbins); pm1 = mlhist/(Dmlbins*sum(mlhist));;; Pm1 = Dm1bins*cumsum(pm1); empirical p.d.f. mllow=mlbins(find(Pm1>0.025,1)); mlhigh=mlbins(find(Pm1>0.975,1));

Nbins=50; mlhmin=min(mlsave); mlhmax=max(mlsave); Dmlbins = (mlhmax-mlhmin) / (Nbins-1); mlbins=mlhmin+Dmlbins*[0:Nbins-1]'; mlhist = hist(mlsave,mlbins); pm1 = m1hist/(Dm1bins*sum(m1hist)); Pm1 = Dm1bins*cumsum(pm1) :> empirical c.d.f. mllow=mlbins(find(Pm1>0.025,1)); mlhigh=mlbins(find(Pm1>0.975,1));

Nbins=50; mlhmin=min(mlsave); mlhmax=max(mlsave); Dmlbins = (mlhmax-mlhmin) / (Nbins-1); mlbins=mlhmin+Dmlbins*[0:Nbins-1]'; mlhist = hist(mlsave,mlbins); pm1 = m1hist/(Dm1bins*sum(m1hist)); Pm1 = Dm1bins*cumsum(pm1); mllow=mlbins(find(Pm1>0.025,1)); mlhigh=mlbins(find(Pm1>0.975,1)); 95% confidence bounds