
Lecture 16

Nonlinear Problems:

Simulated Annealing

and Bootstrap Confidence Intervals

Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches

Lecture 15 Nonlinear Problems: Newton’s Method

Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

Introduce Simulated Annealing

Introduce the Bootstrap Method

for computing Confidence Intervals

Part 1

Simulated Annealing

Monte Carlo Method

completely undirected

Newton’s Method

completely directed

Monte Carlo Method

completely undirected

Newton’s Method

completely directed

slow, but
foolproof

fast, but can fall
into local minimum

compromise

partially-directed random walk

m(p)

Ehigh
Emedium

Elow

m(p)

Ehigh
Emedium

Elow
p(m*|m(p))

m(p)

Ehigh
Emedium

Elow

m*

acceptance of m* as m(p+1)

always accept in error is smaller

accept with probability

where T is a parameter

if error is bigger

large T

1

always accept m*

(undirected random walk)

ignores the error completely

small T

0

accept m* only when error is smaller

(directed random walk)

strictly decreases the error

intermediate T

most iterations decrease the error

but occasionally allow an m*
that increases it

m(p)

Ehigh
Emedium

Elow

large T
undirected

random walk

m(p)

Ehigh
Emedium

Elow

small T
directed

random walk

strategy

start off with large T

slowly decrease T during iterations

undirected

similar to Monte Carlo method

(except more “local”)

directed

similar to Newton’s method

(except precise gradient direction not used)

strategy

start off with large T

slowly decrease T during iterations

claim is that this strategy helps achieve the

global minimum

more random

more directed

analogous to annealing of metals

high temperatures

atoms randomly moving

about due to thermal motions

as temperature decreases

atoms slowly find themselves in a

minimum energy configuration

orderly arrangement of a “crystal”
www.sti-laser.com/technology/heat_treatments.html

analogous to annealing of metals

high temperatures

atoms randomly moving

about due to thermal motions

as temperature decreases

atoms slowly find themselves in a

minimum energy configuration

orderly arrangement of a “crystal”

hence “simulated annealing”

and T called “temperature”

this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.

this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.

sampling a distribution that starts out wide and blurry

but sharpens up as T is decreases

0 100 200 300 400
0

100

200

iteration

E

0 100 200 300 400
1

2

3

iteration

m
1

0 100 200 300 400
0

1

2

iteration

m
2

0 100 200 300 400
0

10

20

iteration

T

0 100 200 300 400
0

0.5

1

iteration

p
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

x

d

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m
2

m
1

20

40

60

80

100

120

140

160

180

200

220

(A)

(B)

(C)

for k = [1:Niter]

T = 0.1 * Eg0 * ((Niter-k+1)/Niter)^2;

ma(1) = random('Normal',mg(1),Dm);

ma(2) = random('Normal',mg(2),Dm);

da = sin(w0*ma(1)*x) + ma(1)*ma(2);

Ea = (dobs-da)'*(dobs-da);

if(Ea < Eg)

mg=ma;

Eg=Ea;

p1his(k+1)=1;

else

p1 = exp(-(Ea-Eg)/T);

p2 = random('unif',0,1);

if(p1 > p2)

mg=ma;

Eg=Ea;

end

end

Part 2

Bootstrap Method

theory of confidence intervals

error is the data

result in

errors in the estimated model parameters

p(d)

d
dobs

p(m)

m
mest

m(d)

theory of confidence intervals

error is the data

result in

errors in the estimated model parameters

p(d)

d

p(m)

m
95% confidence

m(d)

2½% 2½%
2½% 2½%

95% confidence

Gaussian linear theory

d = Gm
m = G-gd

standard error propagation

[cov m]=G-g [cov d] G-gT

univariate Gaussian distribution has

95% of error within two σ of its mean

What to do with

Gaussian nonlinear theory?

One possibility

linearize theory and use standard error

propagation

d = g(m)
m-m(p) ≈ G(p)

–g [d- g(m(p))]
[cov m]≈G(p)

-g [cov d] G(p)
-g

disadvantages

unknown accuracy

and

need to compute gradient of theory G(p)

G(p) not computed when using some

solution methods

alternative

confidence intervals with

repeat datasets

do the whole experiment many times

use results of each experiment to make compute mest

create histograms from many mest’s

derive empirical 95% confidence intervals
from histograms

Bootstrap Method

create approximate repeat datasets

by randomly resampling (with duplications)

the one existing data set

example of resampling

1.4

2.1

3.8

3.1

1.5

1.7

1

2

3

4

5

6

3

1

3

2

5

1

3.8

1.4

3.8

2.1

1.5

1.4

1

2

3

4

5

6

original data

set

random
integers in
range 1-6

resampled

data set

example of resampling

1.4

2.1

3.8

3.1

1.5

1.7

1

2

3

4

5

6

3

1

3

2

5

1

3.8

1.4

3.8

2.1

1.5

1.4

1

2

3

4

5

6

original data

set

random
integers in
range 1-6

new data set

example of resampling

1.4

2.1

3.8

3.1

1.5

1.7

1

2

3

4

5

6

3

1

3

2

5

1

3.8

1.4

3.8

2.1

1.5

1.4

1

2

3

4

5

6

original data

set

random
integers in
range 1-6

resampled

data set

note repeats

rowindex = unidrnd(N,N,1);

xresampled = x(rowindex);

dresampled = dobs(rowindex);

p(d) p’(d)

sampling

duplication

mixing

interpretation of resampling

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

m2

m
1

50

100

150

200

1.19 1.195 1.2 1.205 1.21 1.215
0

20

40

60

80

1.35 1.4 1.45 1.5 1.55 1.6
0

2

4

6

8

(A)
(B)

m1

m2

m1

m2

p
(m

2
)

p
(m

1
)

(C)

Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

histogram

Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

empirical p.d.f.

Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

empirical c.d.f.

Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

95% confidence

bounds

