
Lecture 16

Nonlinear Problems:

Simulated Annealing

and Bootstrap Confidence Intervals 
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Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Introduce Simulated Annealing

Introduce the Bootstrap Method

for computing Confidence Intervals



Part 1

Simulated Annealing



Monte Carlo Method

completely undirected

Newton’s Method

completely directed



Monte Carlo Method

completely undirected

Newton’s Method

completely directed

slow, but 
foolproof

fast, but can fall 
into local minimum



compromise

partially-directed random walk
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m(p)

Ehigh
Emedium

Elow

m*



acceptance of m* as m(p+1) 

always accept in error is smaller

accept with probability

where T is a parameter

if error is bigger



large T

1

always accept m*

(undirected random walk)

ignores the error completely



small T

0

accept m* only when error is smaller 

(directed random walk)

strictly decreases the error



intermediate T

most iterations decrease the error

but occasionally allow an m*
that increases it 



m(p)

Ehigh
Emedium

Elow

large T
undirected

random walk



m(p)

Ehigh
Emedium

Elow

small T
directed

random walk



strategy

start off with large T

slowly decrease T during iterations

undirected

similar to Monte Carlo method

(except more “local”)

directed

similar to Newton’s method

(except precise gradient direction not used)



strategy

start off with large T

slowly decrease T during iterations

claim is that this strategy helps achieve the 

global minimum

more random

more directed



analogous to annealing of metals

high temperatures

atoms randomly moving

about due to thermal motions

as temperature decreases

atoms slowly find themselves in a

minimum energy configuration

orderly arrangement of a “crystal”
www.sti-laser.com/technology/heat_treatments.html



analogous to annealing of metals

high temperatures

atoms randomly moving

about due to thermal motions

as temperature decreases

atoms slowly find themselves in a

minimum energy configuration

orderly arrangement of a “crystal”

hence “simulated annealing”

and T called “temperature”



this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.



this is just Metroplois-Hastings

(way of producing realizations of a random variable)

applied to the p.d.f.

sampling a distribution that starts out wide and blurry

but sharpens up as T is decreases
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for k = [1:Niter]

T = 0.1 * Eg0 * ((Niter-k+1)/Niter)^2;

ma(1) = random('Normal',mg(1),Dm);

ma(2) = random('Normal',mg(2),Dm);

da = sin(w0*ma(1)*x) + ma(1)*ma(2);

Ea = (dobs-da)'*(dobs-da);

if( Ea < Eg )

mg=ma;

Eg=Ea;

p1his(k+1)=1;

else

p1 = exp( -(Ea-Eg)/T );

p2 = random('unif',0,1);

if( p1 > p2 )

mg=ma;

Eg=Ea;

end

end



Part 2

Bootstrap Method



theory of confidence intervals

error is the data

result in

errors in the estimated model parameters

p(d)

d
dobs

p(m)

m
mest

m(d)



theory of confidence intervals

error is the data

result in

errors in the estimated model parameters

p(d)

d

p(m)

m
95% confidence

m(d)

2½% 2½%
2½% 2½%

95% confidence



Gaussian linear theory

d = Gm
m = G-gd

standard error propagation

[cov m]=G-g [cov d] G-gT

univariate Gaussian distribution has

95% of error within two σ of its mean



What to do with

Gaussian nonlinear theory?

One possibility

linearize theory and use standard error 

propagation

d = g(m)
m-m(p) ≈ G(p) 

–g [d- g(m(p)) ]
[cov m]≈G(p)

-g [cov d] G(p)
-g



disadvantages

unknown accuracy

and

need to compute gradient of theory G(p)

G(p) not computed when using some 

solution methods



alternative

confidence intervals with

repeat datasets

do the whole experiment many times

use results of each experiment to make compute mest

create histograms from many mest’s

derive empirical 95% confidence intervals
from histograms



Bootstrap Method

create approximate repeat datasets

by randomly resampling (with duplications)

the one existing data set



example of resampling
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example of resampling
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example of resampling
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rowindex = unidrnd(N,N,1);

xresampled = x( rowindex );

dresampled = dobs( rowindex );



p(d) p’(d)

sampling

duplication

mixing

interpretation of resampling
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Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));



Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

histogram



Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

empirical p.d.f.



Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

empirical c.d.f.



Nbins=50;

m1hmin=min(m1save);

m1hmax=max(m1save);

Dm1bins = (m1hmax-m1hmin)/(Nbins-1);

m1bins=m1hmin+Dm1bins*[0:Nbins-1]';

m1hist = hist(m1save,m1bins);

pm1 = m1hist/(Dm1bins*sum(m1hist));

Pm1 = Dm1bins*cumsum(pm1);

m1low=m1bins(find(Pm1>0.025,1));

m1high=m1bins(find(Pm1>0.975,1));

95% confidence

bounds


