Lecture 17

Factor Analysis

Syllabus

Lecture 01 Describing Inverse Problems Probability and Measurement Error, Part 1 Lecture 02 Probability and Measurement Error, Part 2 Lecture 03 Lecture 04 The L₂ Norm and Simple Least Squares A Priori Information and Weighted Least Squared Lecture 05 **Resolution and Generalized Inverses** Lecture 06 Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance Lecture 08 The Principle of Maximum Likelihood Lecture 09 **Inexact Theories** Lecture 10 Nonuniqueness and Localized Averages Vector Spaces and Singular Value Decomposition Lecture 11 Lecture 12 Equality and Inequality Constraints Lecture 13 L_1 , L_{∞} Norm Problems and Linear Programming Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches Lecture 15 Nonlinear Problems: Newton's Method Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals Lecture 17 **Factor Analysis** Varimax Factors, Empircal Orthogonal Functions Lecture 18 Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon's Problem Lecture 20 Linear Operators and Their Adjoints Lecture 21 Fréchet Derivatives Lecture 22 Exemplary Inverse Problems, incl. Filter Design Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

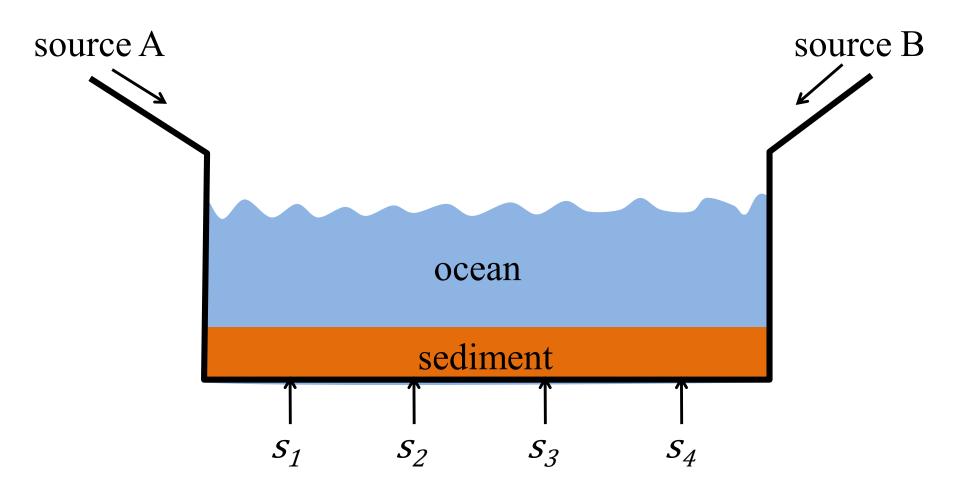
Purpose of the Lecture

Introduce Factor Analysis

Work through an example

Part 1

Factor Analysis



sample matrix ${\boldsymbol{S}}$

 S_{ij} is the fraction of element *j* in sample *i*:

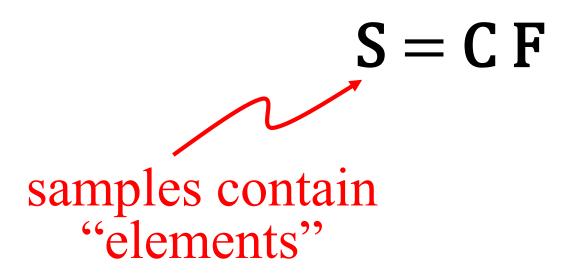
 $\mathbf{S} = \begin{bmatrix} \text{element 1 in sample 1} & \cdots & \text{element } M \text{ in sample 1} \\ \text{element 1 in sample 2} & \cdots & \text{element } M \text{ in sample 2} \\ \vdots & \ddots & \vdots \\ \text{element 1 in sample } M & \cdots & \text{element } M \text{ in sample } N \end{bmatrix}$

S arranged row-wise but we'll use a column vector $\mathbf{s}^{(i)}$ for individual samples)

samples are a linear mixture of sources

S = C F

samples are a linear mixture of sources



samples are a linear mixture of sources

S = C Fsources called "factors" factors contain "elements"

factor matrix **F**

 F_{ij} is the fraction of element *j* in factor *i*:

	element 1 in factor 1 element 1 in factor 2		element <i>M</i> in factor 1 element <i>M</i> in factor 2	
	:	•••	:	
	element 1 in factor p	•••	element <i>M</i> in factor <i>p</i>	

F arranged row-wise but we'll use a column vector $\mathbf{f}^{(i)}$ for individual factors

samples are a linear mixture of sources

S = C F Ncoefficients called "loadings"

loading matrix **C**

 C_{ij} is the fraction of factor *i* in sample *j*:

$$\mathbf{C} = \begin{bmatrix} \text{factor 1 in sample 1} & \cdots & \text{factor } p \text{ in sample 1} \\ \text{factor 1 in sample 2} & \cdots & \text{factor } p \text{ in sample 2} \\ \vdots & \ddots & \vdots \\ \text{factor 1 in sample } N & \cdots & \text{factor } p \text{ in sample } N \end{bmatrix}$$

inverse problem

given S find C and F so that S=CF

very non-unique

given **T** with inverse **T**⁻¹

if S=CF then S=[C T⁻¹][TF] =C'F'

very non-unique

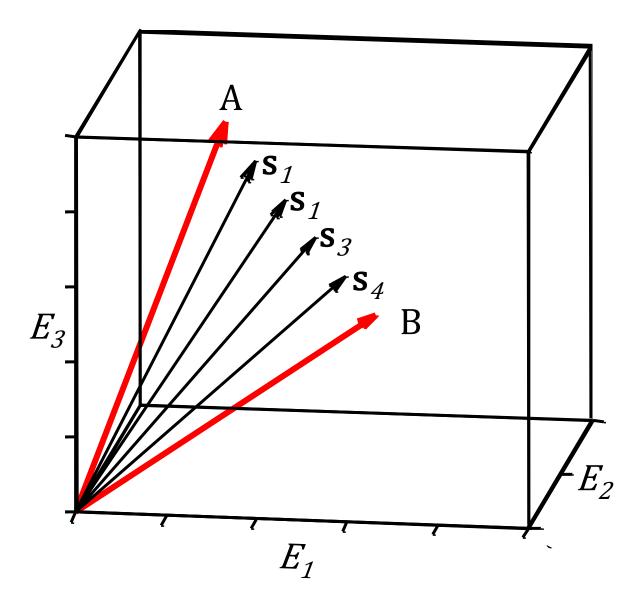
so a priori information needed to select a solution

what is the minimum number of factors needed

call that number p

does **S** span the full space of *M* elements?

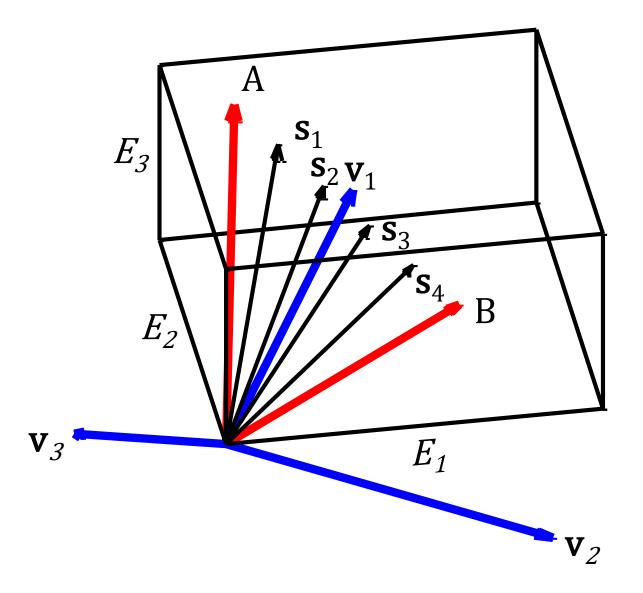
or just a *p*-dimensional subspace?



we know how to answer this question

$\mathbf{S} = \mathbf{U}_{p} \mathbf{\Lambda}_{p} \mathbf{V}_{p}^{T} = \big(\mathbf{U}_{p} \mathbf{\Lambda}_{p}\big) \big(\mathbf{V}_{p}^{T}\big) = \mathbf{C} \mathbf{F}$

p is the number of non-zero singular values



SVD identifies a subspace

but the SVD factors

$$f^{(i)} = v^{(i)}$$
 $i=1, p$

not unique

usually not the "best"

factor $f^{(1)}$ **v** with the largest singular value

usually near the mean sample

sample mean <s> minimize

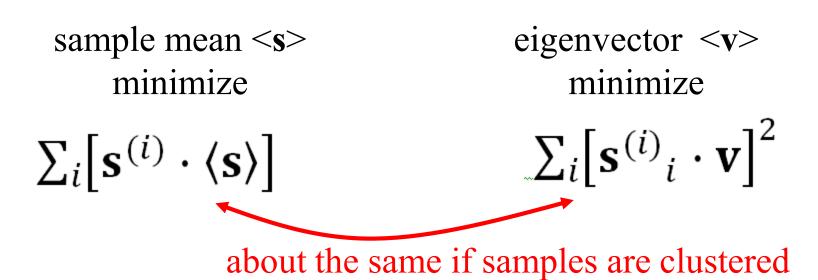
 $\sum_{i} \left[\mathbf{s}^{(i)} \cdot \langle \mathbf{s} \rangle \right]$

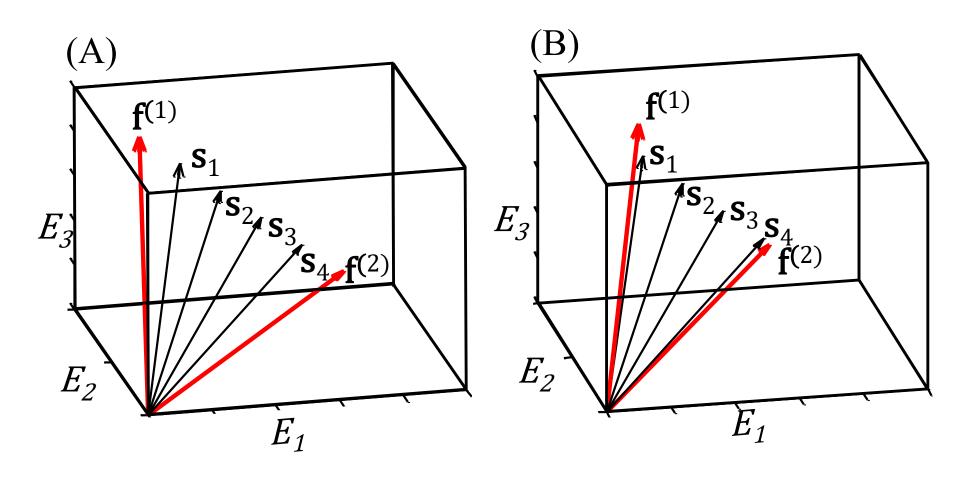
eigenvector <v> minimize

 $\sum_{i} \left[\mathbf{s}^{(i)}_{i} \cdot \mathbf{v} \right]^{2}$

factor $f^{(1)}$ **v** with the largest singular value

usually near the mean sample





in MatLab

- [U, LAMBDA, V] = svd(S,0); lambda = diag(LAMBDA);
- F = V';
- C = U*LAMBDA;

in MatLab "economy" calculation LAMBDA is MXM

- [U, LAMBDA, V] = svd(S,0);
- lambda = diag(LAMBDA);
- F = V';
- C = U*LAMBDA;

since samples have measurement noise

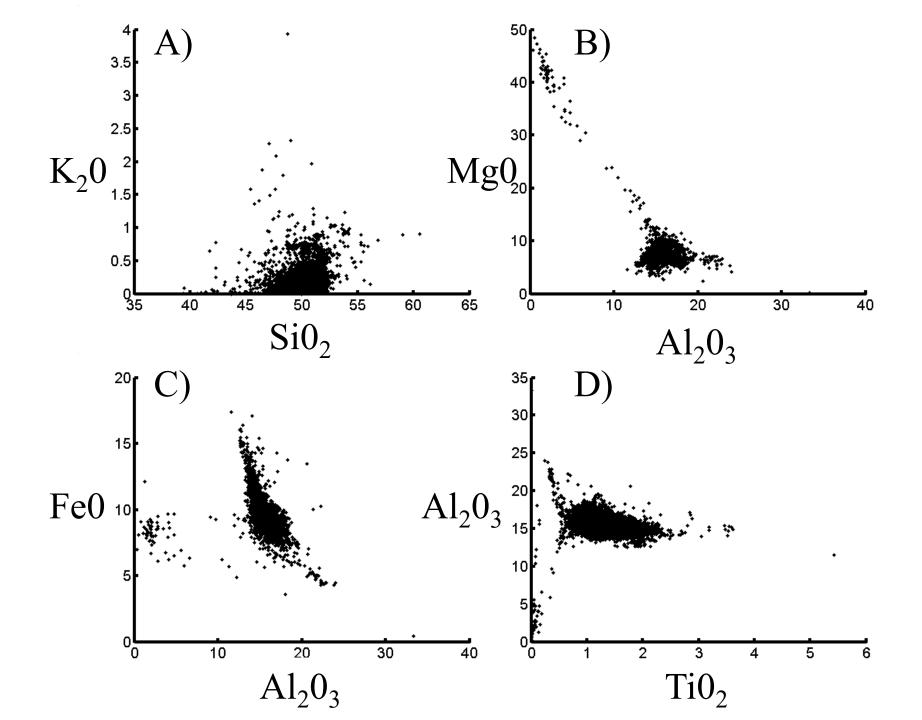
probably no exactly singular values just very small ones

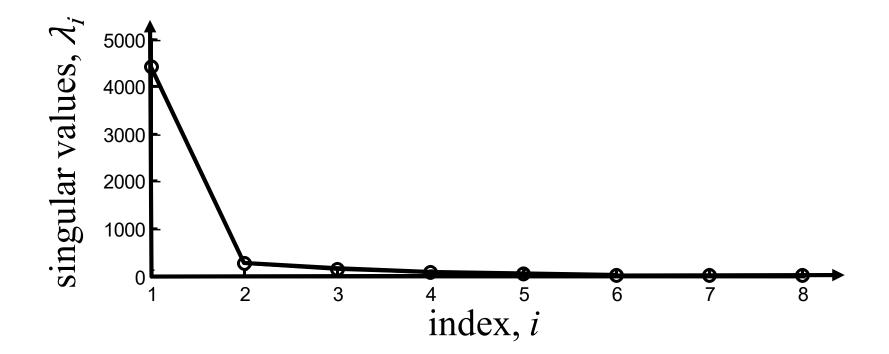
so pick pfor which $S \approx CF$ is an adequate approximation

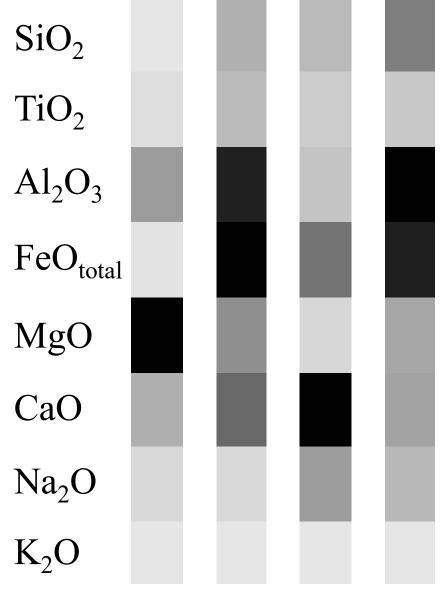
Atlantic Rock Dataset

SiO₂ TiO₂ Al₂O₃ FeO_t MgO CaO Na₂O K₂O

51.97	1.25	14.28	11.57	7.02	11.67	2.12	0.07				
50.21	1.46	16.41	10.39	7.46	11.27	2.94	0.07				
50.08	1.93	15.6	11.62	7.66	10.69	2.92	0.34				
51.04	1.35	16.4	9.69	7.29	10.82	2.65	0.13				
52.29	0.74	15.06	8.97	8.14	13.19	1.81	0.04				
49.18	1.69	13.95	12.11	7.26	12.33	2	0.15				
50.82	1.59	14.21	12.85	6.61	11.25	2.16	0.16				
49.85	1.54	14.07	12.24	6.95	11.31	2.17	0.15				
50.87	1.52	14.38	12.38	6.69	11.28	2.11	0.17				
(several thousand more rows)											







 $f^{(2)}$ $f^{(3)}$ $f^{(4)}$ $f^{(5)}$

