
Lecture 17

Factor Analysis



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Introduce Factor Analysis

Work through an example



Part 1

Factor Analysis



source A

ocean

sediment

source B

s4s2 s3s1



sample matrix S

S arranged row-wise
but we’ll use a column vector s(i) for individual samples)



theory

samples are a linear mixture of sources

S = C F



theory

samples are a linear mixture of sources

S = C F

samples contain 
“elements”



theory

samples are a linear mixture of sources

S = C F

sources called “factors” 
factors contain “elements”



factor matrix F

F arranged row-wise
but we’ll use a column vector f(i) for individual factors



theory

samples are a linear mixture of sources

S = C F

coefficients
called “loadings” 



loading matrix C



inverse problem

given S

find C and F

so that S=CF



very non-unique

given T with inverse T-1

if S=CF

then S=[C T-1][TF] =C’F’



very non-unique

so a priori information needed to 

select a solution



simplicity

what is the minimum number of 

factors needed

call that number p



does S span the full space of M
elements?

or just a p –dimensional subspace?
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we know how to answer this question

p is the number of non-zero singular values
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SVD identifies a subspace

but the SVD factors

f(i) = v(i)      i=1, p

not unique

usually not the “best”



factor f(1)

v with the largest singular value

usually near the mean sample

sample mean <s>

minimize

eigenvector <v>

minimize



factor f(1)

v with the largest singular value

usually near the mean sample

sample mean <s>

minimize

eigenvector <v>

minimize

about the same if samples are clustered
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[U, LAMBDA, V] = svd(S,0);

lambda = diag(LAMBDA);

F = V';

C = U*LAMBDA;

in MatLab



[U, LAMBDA, V] = svd(S,0);

lambda = diag(LAMBDA);

F = V';

C = U*LAMBDA;

“economy” calculation
LAMBDA is M⨉Min MatLab



since samples have measurement noise

probably no exactly singular values

just very small ones

so pick p

for which

S≈CF

is an adequate approximation



Atlantic Rock Dataset

51.97 1.25 14.28 11.57 7.02 11.67 2.12 0.07

50.21 1.46 16.41 10.39 7.46 11.27 2.94 0.07

50.08 1.93 15.6 11.62 7.66 10.69 2.92 0.34

51.04 1.35 16.4 9.69 7.29 10.82 2.65 0.13

52.29 0.74 15.06 8.97 8.14 13.19 1.81 0.04

49.18 1.69 13.95 12.11 7.26 12.33 2 0.15

50.82 1.59 14.21 12.85 6.61 11.25 2.16 0.16

49.85 1.54 14.07 12.24 6.95 11.31 2.17 0.15

50.87 1.52 14.38 12.38 6.69 11.28 2.11 0.17

(several thousand more rows)

SiO2 TiO2 Al2O3 FeOt MgO CaO Na2O   K2O



Al203
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Al203
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