
Lecture 18

Varimax Factors

and

Empircal Orthogonal Functions



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Choose Factors Satisfying A Priori 

Information of Spikiness

(varimax factors)

Use Factor Analysis to Detect

Patterns in data

(EOF’s)



Part 1: Creating Spiky Factors



can we find “better” factors

that those returned by svd()

?



mathematically

S = CF = C’ F’

with F’ = M F  and  C’ = M-1 C

where M is any P×P matrix with an inverse

must rely on prior information to choose M



one possible type of prior 

information

factors should contain mainly just a 

few elements



example of rock and minerals
rocks contain minerals

minerals contain elements

Mineral Composition

Quartz SiO2

Rutile TiO2

Anorthite CaAl2Si2O8

Fosterite Mg2SiO4



example of rock and minerals
rocks contain minerals

minerals contain elements

Mineral Composition

Quartz SiO2

Rutile TiO2

Anorthite CaAl2Si2O8

Fosterite Mg2SiO4

factors

most of 

these 

minerals are 

“simple” in 

the sense 

that each 

contains just 

a few 

elements



spiky factors

factors containing mostly just a few elements



How to quantify spikiness?



variance as a measure of spikiness



modification for factor analysis



modification for factor analysis

depends on the square, so positive and 

negative values are treated the same



f(1)= [1, 0, 1, 0, 1, 0]T

is much spikier than

f(2)= [1, 1, 1, 1, 1, 1]T



f(2)=[1, 1, 1, 1, 1, 1]T

is just as spiky as

f(3)= [1, -1, 1, -1, -1, 1]T



“varimax” procedure

find spiky factors without changing P

start with P svd() factors

rotate pairs of them in their plane by angle θ

to maximize the overall spikiness



fB fA

f’B

f’A

q



determine θ by maximizing



after tedious trig the solution can be 

shown to be



and the new factors are

in this example A=3 and B=5



now one repeats for every pair of factors

and then iterates the whole process several 

times

until the whole set of factors is as spiky as 

possible
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example: Atlantic Rock dataset
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not so spiky
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example: Atlantic Rock dataset

spiky



Part 2: Empirical Orthogonal Functions



row number in the sample matrix could be 

meaningful

example:  samples collected at a succession of times

tim
e



column number in the sample matrix could 

be meaningful

example:  concentration of the same chemical element at a 
sequence of positions

distance



S = CF

becomes



S = CF

becomes

distance dependence time dependence



S = CF

becomes
each loading: a 

temporal pattern of 

variability of the 

corresponding factor

each factor:

a spatial pattern 

of variability of 

the element



S = CF

becomes
there are P 

patterns and 

they are sorted 

into order of 

importance



S = CF

becomes
factors now called 

EOF’s (empirical 

orthogonal functions)



example 1

hypothetical mountain profiles

what are the most important spatial patterns

that characterize mountain profiles



this problem has space but not time

s( xj , i ) = Σk=1
p cki f (k)(xj)



this problem has space but not time

s( xj , i ) = Σk=1
p cki f (k)(xj )

factors are spatial 

patterns that add 

together to make 

mountain profiles
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example 2

spatial-temporal patterns

(synthetic data)



1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

the data
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a single

time
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t=1
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example 3

spatial-temporal patterns

(actual data)

sea surface temperature in the Pacific Ocean
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equatorial Pacific 

Ocean

sea surface temperature 

(black = warm)

CAC Sea Surface Temperature





the image is 30 by 

84 pixels in size, 

or 2520 pixels 

total

to use svd(), the image must be 

unwrapped into a vector of length 2520



2520 positions in the equatorial Pacific ocean
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singular values

no clear cutoff for P, but the first 12 singular values are 

considerably larger than the rest















using SVD to approximate data



S=CMFM

S=CPFP

S≈CP’FP’ 

With M EOF’s, the data is fit exactly

With P chosen to exclude only zero 

singular values, the data is fit exactly

With P’<P, small non-zero singular 

values are excluded too, and the data is 

fit only approximately



A) Original B) Based on first 5 EOF’s


