
Lecture 19

Continuous Problems:

Backus-Gilbert Theory

and

Radon’s Problem



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Extend Backus-Gilbert theory to continuous 
problems

Discuss the conversion of
continuous inverse problems to discrete problems

Solve Radon’s Problem
the simplest tomography problem



Part 1

Backus-Gilbert Theory



Continuous Inverse Theory

the data are discrete

but

the model parameter is a continuous 

function



One or several dimensions



model functiondata

One or several dimensions



hopeless to try to determine estimates 

of model function at a particular depth

m(z0) = ?

localized average is the only way to go



hopeless to try to determine estimates 

of model function at a particular depth

m(z0) = ?

localized average is the only way to go

the problem is that an integral, such as the data kernel 
integral, does not depend upon the value of m(z) at a 

“single point” z0

continuous version of resolution matrix



let’s retain the idea that the

“solution”

depends linearly on the data



let’s retain the idea that the

“solution”

depends linearly on the data

continuous version of 
generalized inverse



implies a formula for R



<m>=G-gd

comparison to discrete case

d=Gm

<m>=Rm

R=G-gG



implies a formula for R



Now define the spread of resolution as



fine generalized inverse

that minimizes the spread J
with the constraint that

= 1





J has exactly the same form as the 

discrete case

only the definition of S is different



Hence the solution is the

same as in the discrete case 

where



furthermore, just as we did in the discrete 

case, we can add the size of the 

covariance

where



and leads to a trade-off of resolution and variance

as before

this just changes the definition of S

spread of resolution
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Part 2

Approximating a

Continuous Problem

as a Discrete Problem



approximation using finite number of 

known functions



approximation using finite number of 

known functions

known functions

unknown coefficients
= discrete model parameters

continuous function



posssible fj(x)’s

voxels (and their lower dimension equivalents)

polynomials

splines

Fourier (and similar) series

and many others



does the choice of fj(x) matter?

Yes!

The choice implements prior information
about the properties of the solution

The solution will be different depending upon 
the choice



conversion to discrete Gm=d



special case of voxels

fi(x) =
1 if x inside Vi

0 otherwise

integral over voxel j

size controlled by the scale of variation of m(x)



center of voxel j

approximation when Gi(x) slowly varying

size controlled by the scale of variation of Gi(x)

more stringent condition than 
scale of variation of m(x)



Part 3

Tomography



Greek Root

tomos

a cut, cutting, slice, section



“tomography”

as it is used in geophysics

data are line integrals of the model function

curve i



you can force this into the form

if you want 

Gi(x)

but the Dirac delta function is not square-
integrable, which leads to problems



Radon’s Problem

straight line rays

data d treated as a continuous variable



x
θ

y

u

s

(u,θ) coordinate system for

Radon Transform

integrate 

over this line



Radon Transform

m(x,y) → d(u,θ)
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Inverse Problem

find m(x,y) given d(u,θ)



Solution via Fourier Transforms

x→kx kx → x



now Fourier transform
u→ku

now change variables
(u,θ) →(x,y) 



now Fourier transform
u→ku

Fourier transform of m(x,y)
evaluated on a line of slope θ

now change variables
(s,u) →(x,y)

Fourier transform 
of d(u,θ)

J=1, by the way



xθ0

y

u

ky

kx

θ0

m(x,y) m(kx,ky)

FT

^̂



Learned two things

1. Proof that solution exists and unique, 

based on “well-known” properties of 

Fourier Transform

2. Recipe how to invert a Radon transform 

using Fourier transforms
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