Lecture 20

Continuous Problems

Linear Operators and Their Adjoints

Syllabus

Lecture 01 **Describing Inverse Problems** Probability and Measurement Error, Part 1 Lecture 02 Probability and Measurement Error, Part 2 Lecture 03 Lecture 04 The L₂ Norm and Simple Least Squares A Priori Information and Weighted Least Squared Lecture 05 **Resolution and Generalized Inverses** Lecture 06 Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance Lecture 08 The Principle of Maximum Likelihood Lecture 09 **Inexact Theories** Lecture 10 Nonuniqueness and Localized Averages Vector Spaces and Singular Value Decomposition Lecture 11 Lecture 12 Equality and Inequality Constraints Lecture 13 L_1 , L_∞ Norm Problems and Linear Programming Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches Nonlinear Problems: Newton's Method Lecture 15 Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals Lecture 17 **Factor Analysis** Varimax Factors, Empircal Orthogonal Functions Lecture 18 Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon's Problem Lecture 20 **Linear Operators and Their Adjoints** Lecture 21 Fréchet Derivatives Lecture 22 Exemplary Inverse Problems, incl. Filter Design Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

Teach you a tiny bit of analysis

enough for you to understand

Linear Operators and their Adjoints

because they are the core technique used in the so-called

adjoint method of computing data kernels

everything we do today

is based on the idea of

generalizing discrete problems to continuous problems

a function

m(x)

is the continuous analog of a vector

m

a function

m(x) simplification: one spatial dimension x

is the continuous analog of a vector

comparison

m is of length M

m(x) is infinite dimensional

What is the continuous analog of a matrix L?

We'll give it a symbol, \mathcal{L}

and a name, a linear operator

Matrix times a vector is another vector

 $\mathbf{b} = \mathbf{L} \mathbf{a}$

so we'll want linear operator on a function is another function

 $b(x) = \mathcal{L}a(x)$

Matrix arithmetic is not communative

$L^{(1)}L^{(2)}a \neq L^{(2)}L^{(1)}a$

so we'll not expect that property for linear operators, either

 $\mathcal{L}^{(1)}\mathcal{L}^{(2)}a(x) \neq \mathcal{L}^{(2)}\mathcal{L}^{(1)}a(x)$

Matrix arithmetic is associative

$(\mathbf{L}^{(1)} \mathbf{L}^{(2)}) \mathbf{L}^{(3)} \mathbf{a} = \mathbf{L}^{(1)} (\mathbf{L}^{(2)} \mathbf{L}^{(3)}) \mathbf{a}$

so well want that property for linear operators, too

 $(\mathcal{L}^{(1)}\mathcal{L}^{(2)})\mathcal{L}^{(3)}a(x) = \mathcal{L}^{(1)}(\mathcal{L}^{(2)}\mathcal{L}^{(3)})a(x)$

Matrix arithmetic is distributive

L [a+b] = La + Lb

so well want that property for linear operators, too

 $\mathcal{L}\left[a(x)+b(x)\right]=\mathcal{L}a(x)+\mathcal{L}b(x)$

Hint to the identity of \mathcal{L}

matrices can approximate derivatives and integrals

$$\mathbf{L}^{\mathbf{A}} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0\\ 0 & -1 & 1 & 0 & \cdots & 0\\ & & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix} \text{ and } \mathbf{L}^{\mathbf{B}} = \Delta x \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0\\ 1 & 1 & 0 & 0 & \cdots & 0\\ & & \ddots & & & \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

$$\mathbf{L}^{\mathbf{A}} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0\\ 0 & -1 & 1 & 0 & \cdots & 0\\ & & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix} \text{ and } \mathbf{L}^{\mathbf{B}} = \Delta x \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0\\ 1 & 1 & 0 & 0 & \cdots & 0\\ & & \ddots & & & \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

 $L^{A}a \approx da/dx$

$$\mathrm{L}^{\mathrm{a}}\mathrm{a} \approx \int_{0}^{x} m(x') \,\mathrm{d}x'$$

Linear Operator \mathcal{L}

any combination of functions, derivatives and integrals

all perfectly good $\mathcal{L}a(x)$'s

 $\mathcal{L}a(x) = c(x)a(x)$

 $\mathcal{L}a(x) = da/dx$

 $\mathcal{L}a(x) = b(x) da/dx + c(x) d^2a/dx^2$

 $\mathcal{L}a(x) = \int_0^x a(\xi) d\xi$

 $\mathcal{L}a(x) = f(x) \int_0^\infty a(\xi) g(x,\xi) d\xi$

What is the continuous analog of the inverse L^{-1} of a matrix L ?

call it \mathcal{L}^{-1}

Problem L^A not square, so has no inverse

$$\mathbf{L}^{\mathbf{A}} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & 0 & \cdots & 0 & 0\\ 0 & -1 & 1 & 0 & \cdots & 0\\ & & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

derivative determines a function only up to an additive constant

Patch by adding top row that sets the constant

$$\mathbf{L}^{C} = \frac{1}{\Delta x} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 \\ & & \ddots & & \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

Now $\mathbf{L}^{B} \mathbf{L}^{C} = \mathbf{I}$

lesson 1: \mathcal{L} may need to include *boundary conditions*

lesson 2:

the analogy to the matrix equation

$$L m = f$$

and its solution
 $m = L^{-1} f$

is the differential equation

$$\mathcal{L}m = f$$

and its Green function solution

$$m(x) = \int_{-\infty}^{+\infty} F(x,\xi) f(\xi) d\xi = \mathcal{L}^{-1} f(x)$$

so the inverse to a differential operator \mathcal{L}

is the Green function integral

$$\mathcal{L}^{-1} a(\mathbf{x}) = \int_{-\infty}^{+\infty} F(\mathbf{x}, \xi) a(\xi) d\xi$$

where *F* solves

$$\mathcal{L}F(x,\xi) = \delta(x-\xi)$$

What is the continuous analogy to a dot product ?

$$a^{T}b = \Sigma_{i} a_{i} b_{i}$$

The continuous analogy to a dot product

$$s = a^T b = \Sigma_i a_i b_i$$

is the inner product
$$s = \int_{-\infty}^{+\infty} a(x)b(x)dx = (a, b)$$

squared length of a vector

$$|{\bf a}|^2 = {\bf a}^T {\bf a}$$

squared length of a function

$$|a|^2 = (a,a)$$

important property of a dot product

$$(\mathbf{L}\mathbf{a})^{\mathrm{T}}\mathbf{b} = \mathbf{a}^{\mathrm{T}}(\mathbf{L}^{\mathrm{T}}\mathbf{b})$$

important property of a dot product

$$(\mathbf{L}\mathbf{a})^{\mathrm{T}}\mathbf{b} = \mathbf{a}^{\mathrm{T}}(\mathbf{L}^{\mathrm{T}}\mathbf{b})$$

what is the continuous analogy?

(La, b) = (a, ?b)

in other words ...

what is the continuous analogy of the transpose of a matrix?

$$(La, b) = (a, ?b)$$

by analogy , it must be another linear operator since transpose of a matrix is another matrix

in other words ...

what is the continuous analogy of the transpose of a matrix?

(La, b) = (a, ?b)

give it a name "adjoint " and a symbol L †

SO ...

 $(\mathcal{L}a, b) = (a, \mathcal{L}^{\dagger}b)$

so, given \mathcal{L} , how do you determine \mathcal{L}^{\dagger} ?

so, given \mathcal{L} , how do you determine \mathcal{L}^{\dagger} ?

various ways ,,,

the adjoint of a function is itself

$$\int_{-\infty}^{+\infty} (ca) b \, \mathrm{d}x = \int_{-\infty}^{+\infty} a \, (cb) \, \mathrm{d}x$$

if $\mathcal{L}=c(x)$ then $\mathcal{L}^{\dagger}=c(x)$

the adjoint of a function is itself

$$\int_{-\infty}^{+\infty} (ca) b \, \mathrm{d}x = \int_{-\infty}^{+\infty} a \, (cb) \, \mathrm{d}x$$

if $\mathcal{L}=c(x)$ then $\mathcal{L}^{\dagger}=c(x)$

a function is *self-adjoint*

the adjoint of a function is itself

$$\int_{-\infty}^{+\infty} (ca) b \, \mathrm{d}x = \int_{-\infty}^{+\infty} a \, (cb) \, \mathrm{d}x$$

if $\mathcal{L}=c(x)$ then $\mathcal{L}^{\dagger}=c(x)$

self-adjoint operator anagous to a symmetric matrixx

the adjoint of d/dx(with zero boundary consitions) is -d/dx

if $\mathcal{L} = d/dx$ then $\mathcal{L}^{\dagger} = -d/dx$

the adjoint of d/dx(with zero boundary consitions) is -d/dx

the adjoint of d^2/dx^2 is itself

apply integration by parts twice

if $\mathcal{L}=d^2/dx^2$ then $\mathcal{L}^{\dagger}=d^2/dx^2$ a function is *self-adjoint*

the adjoint of $\int_{-\infty}^{x} dx$ is $\int_{x}^{+\infty} dx$

$$(\mathcal{L}a, b) = \int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{x} a(\xi) \, \mathrm{d}\xi \right\} b(x) \, \mathrm{d}x =$$
Heaviside
step function
$$\int_{-\infty}^{+\infty} \left\{ \int_{-\infty}^{+\infty} H(x - \xi) \, a(\xi) \, \mathrm{d}\xi \right\} b(x) \, \mathrm{d}x =$$

$$\int_{-\infty}^{+\infty} a(\xi) \left\{ \int_{-\infty}^{+\infty} H(x-\xi)b(x) dx \right\} d\xi =$$

$$\int_{-\infty}^{+\infty} a(\xi) \left\{ \int_{\xi}^{+\infty} b(x) dx \right\} d\xi = (a, \mathcal{L}^{\dagger} b)$$

properties of adjoints

 $(\mathcal{L}^{\dagger})^{\dagger} = \mathcal{L}$ and $(\mathcal{L}^{-1})^{\dagger} = (\mathcal{L}^{\dagger})^{-1}$ $(\mathcal{L}^{A} + \mathcal{L}^{B})^{\dagger} = (\mathcal{L}^{B})^{\dagger} + (\mathcal{L}^{A})^{\dagger}$ and $(\mathcal{L}^{A}\mathcal{L}^{B})^{\dagger} = (\mathcal{L}^{B})^{\dagger}(\mathcal{L}^{A})^{\dagger}$

table of adjoints

d/dx

-d/dx

 d^2/dx^2

 d^2/dx^2

 $\int_{-\infty}^{x} \mathrm{d}x$

analogies

m L Lm=f **L**-1 $f = L^{-1}m$ $s=a^{T}b$ (La) $^{\mathrm{T}}\mathbf{b} = \mathbf{a}^{\mathrm{T}}(\mathbf{L}^{\mathrm{T}}\mathbf{b})$ **L**T

M(X)Ĺ $\mathcal{L}m(x) = f(x)$ $f(X) = \mathcal{L}^{-1}f(X)$ s=(a(x), b(x)) $(\mathcal{L}a, b) = (a, \mathcal{L}^{\dagger}b)$

how is all this going to help us?

step 1

recognize that standard equation of inverse theory

$$d_i = \int_a^b G_i(z) m(z) \, \mathrm{d}z$$

is an inner product $d_i = (G_{i'}, m)$

step 2

suppose that we can show that $d_i = (h_i, \mathcal{L}m)$

then do this $d_i = (\mathcal{L}^{\dagger} h_{\mu} m)$

S0

 $G_i = \mathcal{L}^{\dagger} h_i$

step 2

suppose that we can show that $d_i = (h_i, \mathcal{L}m)$

then do this $d_i = (\mathcal{L}^{\dagger} h_{\mu} m)$

