
Lecture 20

Continuous Problems

Linear Operators and Their Adjoints



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

Teach you a tiny bit of analysis

enough for you to understand

Linear Operators and their Adjoints

because they are the core technique
used in the so-called

adjoint method of computing data kernels



everything we do today

is based on the idea of

generalizing

discrete problems to continuous problems



a function

m(x) 

is the continuous analog of a vector 

m



a function

m(x) 

is the continuous analog of a vector 

m

simplification:
one spatial 

dimension x



comparison

m is of length M

m(x) is infinite dimensional



What is the continuous analog

of a matrix L  ?



We’ll give it a symbol, ℒ

and a name, a linear operator



Matrix times a vector is another vector

b = L a

so we’ll want

linear operator on a function

is another function

b(x) = ℒ a(x)



Matrix arithmetic is not communative

L(1) L(2) a ≠ L(2) L(1) a 

so we’ll not expect that property

for linear operators, either

ℒ (1) ℒ(2) a(x) ≠ ℒ (2) ℒ(1) a(x) 



Matrix arithmetic is associative

(L(1) L(2)) L(3) a = L(1) (L(2) L(3) ) a 

so well want

that property for linear operators, too 

(ℒ (1) ℒ(2) )ℒ(3) a(x) = ℒ (1) (ℒ(2) ℒ(3)) a(x) 



Matrix arithmetic is distributive

L  [a+b] = La + Lb

so well want

that property for linear operators, too

ℒ [a(x)+ b(x)] = ℒ a(x)+ ℒ b(x) 



Hint to the identity of ℒ

matrices can approximate

derivatives

and integrals



B



LAa ≈ da/dx Laa ≈

B



Linear Operatorℒ

any combination of functions, 

derivatives

and integrals



ℒ a(x)= c(x) a(x)

ℒ a(x)= da/dx

ℒa(x) = b(x)da/dx + c(x) d2a/dx 2

ℒ a(x)= ∫0
x

a(ξ)dξ

ℒ a(x)= f(x)∫0
∞

a(ξ)g(x,ξ ) dξ 

all perfectly good ℒ a(x)’s



What is the continuous analog

of the inverse L-1  of a matrix L  ?

call it ℒ -1



Problem

LA not square, so has no inverse  

derivative determines a function only up to an additive constant

Patch by adding  top row that sets the constant 

Now LB LC = I



lesson 1: ℒ may need to include boundary conditions

lesson 2:  

if

ℒ = d/dx ℒ -1  =

then

since 



the analogy to the matrix equation

L m = f
and its solution

m = L-1 f

is the differential equation

ℒ m = f

and its Green function solution

ℒ



so the inverse to a differential operator ℒ

is the Green function integral

ℒ -1  a(x) =

where F solves

a(ξ)



What is the continuous analogy

to a dot product ?

aTb = Σi ai bi



The continuous analogy

to a dot product

s = aTb = Σi ai bi

is the inner product



squared length of a vector

|a|2 = aTa

squared length of a function

|a|2 = (a,a)



important property of a dot product

(La)T b = aT (LTb) 



important property of a dot product

(La)T b = aT (LTb) 

what is the continuous analogy ?

(ℒa, b )= (a, ?b ) 



in other words ...

what is the continuous analogy of 

the transpose of a matrix?

(ℒa, b )= (a, ?b ) 

by analogy , it must be 
another linear operator

since transpose of a matrix is 
another matrix



in other words ...

what is the continuous analogy of 

the transpose of a matrix?

(ℒa, b )= (a, ?b ) 

give it a name 
“adjoint “ and a 

symbol ℒ †



so ...

(ℒa, b )= (a, ℒ † b ) 



so, given ℒ, how do you determine ℒ †  ?



so, given ℒ, how do you determine ℒ †  ?

various ways ,,,



the adjoint of a function is itself

if ℒ=c(x) then    ℒ † =c(x) 



the adjoint of a function is itself

if ℒ=c(x) then    ℒ † =c(x) 

a function is self-adjoint



the adjoint of a function is itself

if ℒ=c(x) then    ℒ † =c(x) 

self-adjoint operator anagous
to a symmetric matrixx



the adjoint of d/dx
(with zero boundary consitions)

is –d/dx

if ℒ=d/dx then    ℒ † =-d/dx



the adjoint of d/dx
(with zero boundary consitions)

is –d/dx

if ℒ=d/dx then    ℒ † =-d/dx

integration by parts



the adjoint of d2/dx2 is itself

a function is self-adjoint

apply integration by parts twice

if ℒ=d2/dx 2 then    ℒ † =d2/dx 2



trick using 

Heaviside 

step function



properties of adjoints



table of adjoints

c(x)

-d/dx

d2/dx2

c(x)

d/dx

d2/dx2



analogies

m

L

Lm=f

L-1

f=L-1m

s=aTb

(La) Tb= a T(LTb)

LT

m(x)

ℒ

ℒm(x)=f(x)

ℒ-1

f(x) =ℒ-1f(x)

s=(a(x), b(x))

(ℒa, b) =(a, ℒ†b)

ℒ†



how is all this going to help us?



step 1

recognize that
standard equation of inverse theory

is an inner product

di = (Gi, m)



step 2

suppose that we can show that

di = (hi, ℒm)

then do this

di = (ℒ†hi, m)

so

Gi = ℒ†hi



step 2

suppose that we can show that

di = (hi, ℒm)

then do this

di = (ℒ†hi, m)

so

Gi = ℒ†hi

formula 

for the 

data 

kernel


