Lecture 21

Continuous Problems

Fréchet Derivatives

Syllabus

Lecture 01 Describing Inverse Problems Probability and Measurement Error, Part 1 Lecture 02 Probability and Measurement Error, Part 2 Lecture 03 Lecture 04 The L₂ Norm and Simple Least Squares A Priori Information and Weighted Least Squared Lecture 05 **Resolution and Generalized Inverses** Lecture 06 Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance Lecture 08 The Principle of Maximum Likelihood Lecture 09 **Inexact Theories** Lecture 10 Nonuniqueness and Localized Averages Vector Spaces and Singular Value Decomposition Lecture 11 Lecture 12 Equality and Inequality Constraints Lecture 13 L_1 , L_{∞} Norm Problems and Linear Programming Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches Nonlinear Problems: Newton's Method Lecture 15 Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals Lecture 17 **Factor Analysis** Varimax Factors, Empircal Orthogonal Functions Lecture 18 Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon's Problem Linear Operators and Their Adjoints Lecture 20 Lecture 21 **Fréchet Derivatives** Exemplary Inverse Problems, incl. Filter Design Lecture 22 Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

use adjoint methods to compute

data kernels

Part 1

Review of Last Lecture

a function

m(x)

is the continuous analog of a vector

m

a linear operator

L

is the continuous analog of a matrix

Ι,

a inverse of a linear operator

\mathcal{L}^{-1}

is the continuous analog of the inverse of a matrix

a inverse of a linear operator can be used to solve a differential equation

if $\mathcal{L}m = f$ then $m = \mathcal{L}^{-1}f$

just as the inverse of a matrix can be used to solve a matrix equation

if Lm = f then $m = L^{-1}f$

the inner product

$$s = \int_{-\infty}^{+\infty} a(x)b(x)dx = (a,b)$$

is the continuous analog of dot product

$$s = a^T b$$

the adjoint of a linear operator

 $\int t$

is the continuous analog of the transpose of a matrix

 \mathbf{L}^{T}

the adjoint can be used to manipulate an inner product

 $(\mathcal{L}a, b) = (a, \mathcal{L}^{\dagger}b)$

just as the transpose can be used to manipulate the dot product

(La) $^{T}b = a^{T}(L^{T}b)$

table of adjoints

d/dx

-d/dx

 d^2/dx^2

 d^2/dx^2

 $\int_{-\infty}^{x} \mathrm{d}x$

Part 2

definition of the Fréchet derivatives

first

rewrite the standard inverse theory equation in terms of perturbations

a small change in the model causes a small change in the data

second compare with the standard formula for a derivative

$$\delta d_i = \int G_i(x) \, \delta m(x) \, \mathrm{d}x = (G_i, \delta m)$$

$$\Delta d_i = \sum_{i=1}^{M} G_{ij}^{(0)} \Delta m_j \quad \text{with} \quad G_{ij}^{(0)} = \frac{\partial d_i}{\partial m_j} \Big|_{\mathbf{m}^{(0)}}$$

third

identify the data kernel as a kind of derivative

$$\delta d_{i} = \int G_{i}(x) \, \delta m(x) \, dx = (G_{i}, \delta m)$$

$$\int G_{i}(x) = \frac{\delta d_{i}}{\delta m} \Big|_{\mathbf{m}^{(0)}}$$

this kind of derivative is called a Fréchet derivative

definition of a Fréchet derivative

$$\delta d_i = \left(\left. \frac{\delta d_i}{\delta m} \right|_{\mathbf{m}^{(0)}}, \delta m \right)$$

this is mostly lingo though perhaps it adds a little insight about what the data kernel is

Part 2

Fréchet derivative of Error

treat the data as a continuous function d(x)then the standard L₂ norm error is

$$E = (d^{obs} - d, d^{obs} - d)$$

let the data d(x) be related to the model m(x)by $d=\mathcal{L}m$

$\mathcal{L}m$ could be the data kernel integral $\mathcal{L}m = \int G_i(x) m(x) dx$ because integrals are linear operators

now do a little algebra to relate

 δE to δm

a perturbation in the model causes a perturbation in the error

$$\begin{split} \delta E &= E - E^{(0)} = \\ &= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) = \\ &= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) = \\ &= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) = \\ &= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d) \\ &\approx -2(d^{obs} - d^{(0)}, \delta d) \\ &= -2(d^{obs} - d^{(0)}, \delta d) \end{split}$$

$m^{(0)}$ implies $d^{(0)}$ with error $E^{(0)}$ then ...

if

$$\begin{split} \delta E &= E - E^{(0)} = \\ &= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) = \\ &= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) = \\ &= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) = \\ &= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d) \\ &\approx -2(d^{obs} - d^{(0)}, \delta d) \end{split}$$

all this is just algebra

$$\delta E = E - E^{(0)} =$$

$$= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) =$$

$$= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d)$$

$$\approx -2(d^{obs} - d^{(0)}, \delta d)$$

$$= -2(d^{obs} - d^{(0)}, \delta d)$$

$$use \ \delta d = \mathcal{L} \delta m$$

$$\delta E = E - E^{(0)} =$$

$$= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) =$$

$$= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d)$$

$$\approx -2(d^{obs} - d^{(0)}, \delta d)$$

$$= (-2\mathcal{L}^{\dagger}(d^{obs} - d^{(0)}), \delta m)$$
use adjoint

you can use this derivative to solve and inverse problem using the gradient method

$$\mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') dx'$$

$$d(x) = \mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') dx'$$

this is the relationship between model and data

$$\mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') dx'$$
$$\bigcup$$
$$\mathcal{L}^{\dagger} d(x) = -a \frac{d}{dx} d(x) + b \int_{x}^{-\infty} d(x') dx'$$
$$\bigcup$$
Fréchet derivative of Error
$$\frac{\delta E}{\delta m}\Big|_{\mathbf{m}^{(0)}} = 2a \frac{d}{dx} [d^{obs}(x) - d^{(0)}(x)] - 2b \int_{x}^{-\infty} [d^{obs}(x') - d^{(0)}(x')] dx'$$

Part 3

Backprojection

continuous analog of least squares

$$\frac{\delta E}{\delta m}\Big|_{\mathbf{m}^{(0)}} = 0 = -2\mathcal{L}^{\dagger}(d^{obs} - d) = -2\mathcal{L}^{\dagger}(d^{obs} - \mathcal{L}m)$$

or

 $\mathcal{L}^{\dagger}\mathcal{L}m = \mathcal{L}^{\dagger}d^{obs}$

now define the identity operator \mathcal{I} $m(x) = \mathcal{I}m(x)$

- $\mathcal{L}^{\dagger}\mathcal{L}m = \mathcal{L}^{\dagger}d^{obs}$
- $(\mathcal{L}^{\dagger}\mathcal{L} + \mathcal{I} \mathcal{I})m = \mathcal{L}^{\dagger}d^{obs}$

 $m = \mathcal{I}m = \mathcal{L}^{\dagger}d^{obs} - (\mathcal{L}^{\dagger}\mathcal{L} - \mathcal{I}) m$

view as a recursion

 $m^{(i+1)} = \mathcal{L}^{\dagger} d^{obs} - (\mathcal{L}^{\dagger} \mathcal{L} - \mathcal{I}) m^{(i)}$

 $m^{(1)} = \mathcal{L}^{\dagger} d^{obs}$
view as a recursion

$$m^{(i+1)} = \mathcal{L}^{\dagger} d^{obs} - (\mathcal{L}^{\dagger} \mathcal{L} - \mathcal{I}) m^{(i)}$$

$$m^{(0)} = 0$$

$$m^{(1)} = (\mathcal{L}^{\dagger}) d^{obs} \text{ adjoint as if it were the inverse}$$

example

$$d^{obs}(x) = \mathcal{L} m(x) = \int_{-\infty}^{x} m(x') \, \mathrm{d}x'$$

exact

$$m(x) = \mathcal{L}^{-1} d^{obs} = d d^{obs} / dx$$

backprojection

$$m^{(1)}(x) = \mathcal{L}^{\dagger} d^{obs}(x) = \int_{x}^{\infty} d^{obs}(x') dx'$$

example

$$d^{obs}(x) = \mathcal{L} m(x) = \int_{-\infty} m(x') dx'$$

exact

$$m(x) = \mathcal{L}^{-1} d^{obs} = d d^{obs} / dx$$

backprojection

$$m^{(1)}(x) = \mathcal{L}^{\dagger} d^{obs}(x) = \int_{x}^{\infty} d^{obs}(x') dx'$$
crazy

interpretation as tomography

$$d^{obs}(x) = \int_{-\infty}^{x} m(x') \, \mathrm{d}x'$$

m is slowness *d* is travel time of a ray from $-\infty$ to x

backprojection
$$m^{(1)}(x) = \int_{x}^{\infty} d^{obs}(x') dx'$$

integrate (=add together) the travel times of all rays that pass through the point x discrete analysis

Gm=d

$\mathbf{G} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}} \quad \mathbf{G}^{\mathrm{-g}} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{U}^{\mathrm{T}} \quad \mathbf{G}^{\mathrm{T}} = \mathbf{V} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$ if $\mathbf{\Lambda}^{-1} \approx \mathbf{\Lambda}$ then $\mathbf{G}^{\mathrm{-g}} \approx \mathbf{G}^{\mathrm{T}}$

backprojection works when the singular values are all roughly the same size

```
suggests scaling
Gm=d →WGm=Wd
```

where W is a diagonal matrix chosen to make the singular values more equal in overall size

Traveltime tomography: $W_{ii} = (\text{length of ith ray})^{-1}$

so $[Wd]_i$ has interpretation of the average slowness along the ray *i*.

Backprojection now adds together the average slowness of all rays that interact with the point *x*.

Part 4

Fréchet Derivative

involving a differential equation

Part 4

Fréchet Derivative

involving a differential equation

seismic wave equation Navier-Stokes equation of fluid flow etc field *u* is related to model parameters *m* via a differential equation

 $\mathcal{L}\,u(x)=m(x)$

data d is related to field u via an inner product

$$d_i = \left(h_i(x), u(x)\right)$$

write in terms of perturbations

perturbation δu is related to perturbation δm via a differential equation

 $\mathcal{L}\,\delta u(x)=\delta m(x)$

pertrubation δd is related to perturbation δu via an inner product

 $\delta d_i = \left(h_i(x), \delta u(x)\right)$

what's the data kernel?

$$\delta d_i = \int G_i(x) \, \delta m(x) \, \mathrm{d}x = (G_i, \delta m)$$

 $\delta d_i = (h_i, \delta u)$ data inner product with field

 $\delta d_i = (h_i, \delta u)$ data is inner product with field

= $(h_i, \mathcal{L}^{-1}\delta m)$ field satisfies $\mathcal{L}\delta u = \delta m$

 $\delta d_i = (h_i, \delta u)$ data is inner product with field

= $(h_i, \mathcal{L}^{-1}\delta m)$ field satisfies $\mathcal{L}\delta u = \delta m$

= $((\mathcal{L}^{-1})^{\dagger}h_i, \delta m)$ employ adjoint

 $\delta d_i = (h_i, \delta u)$ data is inner product with field

- = $(h_i, \mathcal{L}^{-1}\delta m)$ field satisfies $\mathcal{L}\delta u = \delta m$
- = $((\mathcal{L}^{-1})^{\dagger}h_i, \delta m)$ employ adjoint
- $= ((\mathcal{L}^{\dagger})^{-1}h_i, \delta m)$ inverse of adjoint is adjoint of inverse

 $\delta d_i = (h_i, \delta u)$ data is inner product with field

- = $(h_i, \mathcal{L}^{-1}\delta m)$ field satisfies $\mathcal{L}\delta u = \delta m$
- = $((\mathcal{L}^{-1})^{\dagger}h_i, \delta m)$ employ adjoint

 $=((\mathcal{L}^{\dagger})^{-1}h_i)\delta m)$ inverse of adjoint is adjoint of inverse

data kernel

 $G_i(x) = (\mathcal{L}^{\dagger})^{-1} h_i(x)$

 $\delta d_i = (h_i, \delta u)$ data is inner product with field $= (h_i, \mathcal{L}^{-1} \delta m)$ field satisfies $\mathcal{L} \delta u = \delta m$ = $((\mathcal{L}^{-1})^{\dagger}h_i, \delta m)$ employ adjoint $=((\mathcal{L}^{\dagger})^{-1}h_i)\delta m)$ inverse of adjoint is adjoint of **inverse** data kernel $G_i(x) = (\mathcal{L}^{\dagger})^{-1} h_i(x)$ data kernel satisfies "adjoint $\mathcal{L}^{\dagger}G_i(x) = h_i(x)$ differential equation

most problem involving differential equations are solved numerically

so instead of just solving

 $\mathcal{L}\,\delta u(x) = \delta m(x)$

you must solve

 $\mathcal{L} \delta u(x) = \delta m(x)$ and $\mathcal{L}^{\dagger} G_i(x) = h_i(x)$

so there's more work

but the same sort of work

example time *t* instead of position *x*

field solves a Newtonian-type heat flow equation where *u* is temperature and m is heating $\mathcal{L}u(t) = \left\{\frac{d}{dt} + c\right\}u(t) = m(t)$

data is concentration of chemical whose production rate is proportional to temperature

$$d_i = P(t_i) = b \int_0^{t_i} u(t) dt$$

example time *t* instead of position *x*

field solves a Newtonian-type heat flow equation where *u* is temperature $\mathcal{L}u(t) = \left\{\frac{d}{dt} + c\right\} u(t) = m(t)$

data is concentration of chemical whose production rate is proportional to temperature

$$d_i = P(t_i) = b \int_0^{t_i} u(t) dt = (bH(t_i-t), u)$$

so $h_i = bH(t_i-t)$

we will solve this problem analytically using Green functions

in more complicated cases the differential equation must be solved numerically

Newtonian equation $\mathcal{L}u(t) = \left\{\frac{d}{dt} + c\right\}u(t) = m(t)$

its Green function $F(t,\tau) = H(t-\tau) \exp\{-c(t-\tau)\}$

adjoint equation $\mathcal{L}^{\dagger}u(t) = \left\{-\frac{d}{dt} + c\right\}g_{i}(t) = h_{i}(t)$

its Green function $Q(t,\tau) = H(\tau - t) \exp\{+c(t - \tau)\}$

note that the adjoint Green function $Q(t,\tau) = H(\tau - t) \exp\{+c(t - \tau)\}$

is the original Green function $F(t,\tau) = H(t-\tau) \exp\{-c(t-\tau)\}$

backward in time

that's a fairly common pattern whose significance will be pursued in a homework problem we must perform a Green function integral to compute the data kernel

$$G_i(t) = \int_0^\infty Q(t,\tau) h_i(\tau) d\tau =$$

= $\int_0^\infty H(\tau - t) \exp\{c(t - \tau)\} bH(t_i - \tau) d\tau =$
= $b \int_0^\infty H(\tau - t) H(t_i - \tau) \exp\{c(t - \tau)\} d\tau =$
= $b \int_t^{t_i} \exp\{-c(\tau - t)\} d\tau$

$$\begin{aligned} G_i(t) &= b \int_t^{t_i} \exp\{-c(\tau - t)\} \, d\tau \\ &= \begin{cases} 0 & t_i \le t \\ -\frac{b}{c} [\exp\{-c(t_i - t)\} - 1] & t_i > t \end{cases} \end{aligned}$$

time, t

row, *i*

Part 4

Fréchet Derivative

involving a parameter in differential equation

Part 4

Fréchet Derivative

involving a parameter in differential equation

linearize around a simpler equation

 $c(t)=c^{(0)}+\delta c(t)$

 $u(t) = u^{(0)}(t) + \delta u(t)$

and assume you can solve this equation $\left\{\frac{d}{dt} + c^{(0)}\right\} u^{(0)}(t) = f(t)$

the perturbed equation is

$$\begin{cases} \frac{d}{dt} + c^{0} + \delta c(t) \\ \left\{ \frac{d}{dt} + c^{0} \right\} u^{(0)}(t) + \left\{ \frac{d}{dt} + c^{0} \\ \right\} \delta u(t) + \delta c(t) u^{(0)}(t) + \delta c(t) \delta u(t) = f(t) \end{cases}$$

subtracting out the unperturbed equation, ignoring second order terms, and rearranging gives ...
then approximately

$$\left\{\frac{d}{dt} + c^{0}\right\}\delta u(t) = -\delta c(t) u^{(0)}(t)$$
pertubation to
parameter acts
as an unknown
forcing

so it is back to the form of a forcing and the previous methodology can be applied