Lecture 21

Continuous Problems

Fréchet Derivatives
Syllabus

<table>
<thead>
<tr>
<th>Lecture 01</th>
<th>Describing Inverse Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 02</td>
<td>Probability and Measurement Error, Part 1</td>
</tr>
<tr>
<td>Lecture 03</td>
<td>Probability and Measurement Error, Part 2</td>
</tr>
<tr>
<td>Lecture 04</td>
<td>The L_2 Norm and Simple Least Squares</td>
</tr>
<tr>
<td>Lecture 05</td>
<td>A Priori Information and Weighted Least Squared</td>
</tr>
<tr>
<td>Lecture 06</td>
<td>Resolution and Generalized Inverses</td>
</tr>
<tr>
<td>Lecture 07</td>
<td>Backus-Gilbert Inverse and the Trade Off of Resolution and Variance</td>
</tr>
<tr>
<td>Lecture 08</td>
<td>The Principle of Maximum Likelihood</td>
</tr>
<tr>
<td>Lecture 09</td>
<td>Inexact Theories</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Nonuniqueness and Localized Averages</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Vector Spaces and Singular Value Decomposition</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Equality and Inequality Constraints</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>L_1, L_∞ Norm Problems and Linear Programming</td>
</tr>
<tr>
<td>Lecture 14</td>
<td>Nonlinear Problems: Grid and Monte Carlo Searches</td>
</tr>
<tr>
<td>Lecture 15</td>
<td>Nonlinear Problems: Newton’s Method</td>
</tr>
<tr>
<td>Lecture 16</td>
<td>Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals</td>
</tr>
<tr>
<td>Lecture 17</td>
<td>Factor Analysis</td>
</tr>
<tr>
<td>Lecture 18</td>
<td>Varimax Factors, Empirical Orthogonal Functions</td>
</tr>
<tr>
<td>Lecture 19</td>
<td>Backus-Gilbert Theory for Continuous Problems; Radon’s Problem</td>
</tr>
<tr>
<td>Lecture 20</td>
<td>Linear Operators and Their Adjoints</td>
</tr>
<tr>
<td>Lecture 21</td>
<td>Fréchet Derivatives</td>
</tr>
<tr>
<td>Lecture 22</td>
<td>Exemplary Inverse Problems, incl. Filter Design</td>
</tr>
<tr>
<td>Lecture 23</td>
<td>Exemplary Inverse Problems, incl. Earthquake Location</td>
</tr>
<tr>
<td>Lecture 24</td>
<td>Exemplary Inverse Problems, incl. Vibrational Problems</td>
</tr>
</tbody>
</table>
Purpose of the Lecture

use adjoint methods to compute data kernels
Part 1

Review of Last Lecture
a function

\[m(x) \]

is the continuous analog of a vector

\[\mathbf{m} \]
a linear operator

L

is the continuous analog of a matrix

\mathbf{L}
a inverse of a linear operator

L^{-1}

is the continuous analog of the inverse of a matrix

L^{-1}
a inverse of a linear operator can be used to solve a differential equation

\[\text{if } \mathcal{L}m = f \text{ then } m = \mathcal{L}^{-1}f \]

just as the inverse of a matrix can be used to solve a matrix equation

\[\text{if } Lm = f \text{ then } m = L^{-1}f \]
the inner product

\[s = \int_{-\infty}^{+\infty} a(x) b(x) \, dx = (a, b) \]

is the continuous analog of dot product

\[s = a^T b \]
the adjoint of a linear operator

\mathcal{L}^\dagger

is the continuous analog of the transpose of a matrix

L^T
the adjoint can be used to manipulate an inner product

$$(\mathcal{L}a, b) = (a, \mathcal{L}^\dagger b)$$

just as the transpose can be used to manipulate the dot product

$$(La)^T b = a^T (L^T b)$$
Table of Adjoints

<table>
<thead>
<tr>
<th>Function</th>
<th>Adjoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c(x))</td>
<td>(c(x))</td>
</tr>
<tr>
<td>(\frac{d}{dx})</td>
<td>(-\frac{d}{dx})</td>
</tr>
<tr>
<td>(\frac{d^2}{dx^2})</td>
<td>(\frac{d^2}{dx^2})</td>
</tr>
<tr>
<td>(\int_{-\infty}^{x} dx)</td>
<td>(\int_{x}^{+\infty} dx)</td>
</tr>
</tbody>
</table>
Part 2

definition of the Fréchet derivatives
first rewrite the standard inverse theory equation in terms of perturbations

\[d_i = \int G_i(x) \, m(x) \, dx = (G_i, m) \]

\[\delta d_i = \int G_i(x) \, \delta m(x) \, dx = (G_i, \delta m) \]

a small change in the model causes a small change in the data
second compare with the standard formula for a derivative

\[\delta d_i = \int G_i(x) \delta m(x) \, dx = (G_i, \delta m) \]

\[\Delta d_i = \sum_{i=1}^{M} G_{ij}^{(0)} \Delta m_j \quad \text{with} \quad G_{ij}^{(0)} = \left. \frac{\partial d_i}{\partial m_j} \right|_{m^{(0)}} \]
third
identify the data kernel as a kind of derivative

\[\delta d_i = \int G_i(x) \delta m(x) \, dx = (G_i, \delta m) \]

\[G_i(x) = \frac{\delta d_i}{\delta m \bigg|_{m^{(0)}}} \]

this kind of derivative is called a Fréchet derivative
definition of a Fréchet derivative

\[
\delta d_i = \left(\frac{\delta d_i}{\delta m} \bigg|_{m(0)} , \delta m \right)
\]

this is mostly lingo
though perhaps it adds a little insight about what the data kernel is
Part 2

Fréchet derivative of Error
treat the data as a continuous function $d(x)$ then the standard L_2 norm error is

$$E = (d^{obs} - d, d^{obs} - d)$$
let the data \(d(x) \) be related to the model \(m(x) \) by

\[
d = \mathcal{L}m
\]

\(\mathcal{L}m \) could be the data kernel integral

\[
\mathcal{L}m = \int G_i(x) \, m(x) \, dx
\]

because integrals are linear operators
now do a little algebra to relate

\[\delta E \text{ to } \delta m \]

a perturbation in the model
causes
a perturbation in the error
if \(m^{(0)} \) implies \(d^{(0)} \) with error \(E^{(0)} \) then ...

\[
\delta E = E - E^{(0)} =
\]

\[
= (d^{\text{obs}} - d, d^{\text{obs}} - d) - (d^{\text{obs}} - d^{(0)}, d^{\text{obs}} - d^{(0)}) =
\]

\[
= -2(d, d^{\text{obs}}) + (d, d) + 2(d^{(0)}, d^{\text{obs}}) - (d^{(0)}, d^{(0)}) =
\]

\[
= -2(d^{\text{obs}} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) =
\]

\[
= -2(d^{\text{obs}} - d^{(0)}, \delta d) + (\delta d, \delta d)
\approx -2(d^{\text{obs}} - d^{(0)}, \delta d)
= -2(d^{\text{obs}} - d^{\text{(0)}}, L \delta m)\]
if $m^{(0)}$ implies $d^{(0)}$ with error $E^{(0)}$
then ...

\[\delta E = E - E^{(0)} = \]
\[= (d_{obs} - d, d_{obs} - d) - (d_{obs} - d^{(0)}, d_{obs} - d^{(0)}) = \]
\[= -2(d, d_{obs}) + (d, d) + 2(d^{(0)}, d_{obs}) - (d^{(0)}, d^{(0)}) = \]
\[= -2(d_{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) = \]
\[= -2(d_{obs} - d^{(0)}, \delta d) + (\delta d, \delta d) \]
\[\approx -2(d_{obs} - d^{(0)}, \delta d) \]
if $m^{(0)}$ implies $d^{(0)}$ with error $E^{(0)}$ then ...

\[\delta E = E - E^{(0)} = \]

\[= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) = \]

\[= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) = \]

\[= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) = \]

\[= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d) \]

\[\approx -2(d^{obs} - d^{(0)}, \delta d) \]

\[= -2(d^{obs} - d^{(0)}, \mathcal{L}\delta m) \]

\[\text{use } \delta d = \mathcal{L}\delta m \]
if $m^{(0)}$ implies $d^{(0)}$ with error $E^{(0)}$ then ...

$$\delta E = E - E^{(0)} =$$

$$= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) =$$

$$= -2(d, d^{obs}) + (d, d) + 2(d^{(0), d^{obs}}) - (d^{(0)}, d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d - d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d)$$

$$\approx -2(d^{obs} - d^{(0)}, \delta d)$$

$$= -2(d^{obs} - d^{(0)}, \mathcal{L}\delta m)$$

$$= (-2\mathcal{L}^\dagger(d^{obs} - d^{(0)}), \delta m)$$

use adjoint
if $m^{(0)}$ implies $d^{(0)}$ with error $E^{(0)}$
then ...

$$\delta E = E - E^{(0)} =$$

$$= (d^{obs} - d, d^{obs} - d) - (d^{obs} - d^{(0)}, d^{obs} - d^{(0)}) =$$

$$= -2(d, d^{obs}) + (d, d) + 2(d^{(0)}, d^{obs}) - (d^{(0)}, d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, d - d^{(0)}) + (d - d^{(0)}, d^{obs} - d^{(0)}) =$$

$$= -2(d^{obs} - d^{(0)}, \delta d) + (\delta d, \delta d)$$

$$\approx -2(d^{obs} - d^{(0)}, \delta d)$$

$$= -2(d^{obs} - d^{(0)}, \mathcal{L}\delta m)$$

$$\frac{\delta E}{\delta m} \bigg|_{m^{(0)}} = -2\mathcal{L}^\dagger(d^{obs} - d^{(0)})$$

Fréchet derivative of Error
you can use this derivative to solve and inverse problem using the gradient method
$\mathcal{L} \ m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') \, dx'$
example

\[d(x) = \mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') \, dx' \]

this is the relationship between model and data
Example

\[\mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') \, dx' \]

\[\mathcal{L}^\dagger d(x) = -a \frac{d}{dx} d(x) + b \int_{x}^{-\infty} d(x') \, dx' \]
example

\[\mathcal{L} m(x) = a \frac{d}{dx} m(x) + b \int_{-\infty}^{x} m(x') \, dx' \]

\[\mathcal{L}^\dagger d(x) = -a \frac{d}{dx} d(x) + b \int_{x}^{-\infty} d(x') \, dx' \]

Fréchet derivative of Error

\[\left. \frac{\delta E}{\delta m} \right|_{m^{(0)}} = 2a \frac{d}{dx} \left[d^{obs}(x) - d^{(0)}(x) \right] - 2b \int_{x}^{-\infty} \left[d^{obs}(x') - d^{(0)}(x') \right] \, dx' \]
Part 3

Backprojection
continuous analog of least squares

$$\frac{\delta E}{\delta m} \bigg|_{m^{(0)}} = 0 = -2\mathcal{L}^\dagger(d^{obs} - d) = -2\mathcal{L}^\dagger(d^{obs} - \mathcal{L}m)$$

or

$$\mathcal{L}^\dagger\mathcal{L}m = \mathcal{L}^\dagger d^{obs}$$
now define the identity operator I

$$m(x) = I \, m(x)$$

$$\mathcal{L}^\dagger \mathcal{L} m = \mathcal{L}^\dagger d^{obs}$$

$$(\mathcal{L}^\dagger \mathcal{L} + I - I) m = \mathcal{L}^\dagger d^{obs}$$

$$m = Im = \mathcal{L}^\dagger d^{obs} - (\mathcal{L}^\dagger \mathcal{L} - I) \, m$$
view as a recursion

\[m^{(i+1)} = \mathcal{L}^\dagger d^{obs} - (\mathcal{L}^\dagger \mathcal{L} - I) m^{(i)} \]

\[m^{(0)} = 0 \]

\[m^{(1)} = \mathcal{L}^\dagger d^{obs} \]
view as a recursion

\[m^{(i+1)} = \mathcal{L}^\dagger d^{obs} - (\mathcal{L}^\dagger \mathcal{L} - I) m^{(i)} \]

\[m^{(0)} = 0 \]

\[m^{(1)} = \mathcal{L}^\dagger d^{obs} \]

using the adjoint as if it were the inverse
example

\[d^{obs}(x) = \mathcal{L} m(x) = \int_{-\infty}^{x} m(x') \, dx' \]

exact

\[m(x) = \mathcal{L}^{-1} d^{obs} = d \frac{d^{obs}}{dx} \]

backprojection

\[m^{(1)}(x) = \mathcal{L}^\dagger d^{obs}(x) = \int_{x}^{\infty} d^{obs}(x') \, dx' \]
example

$$d^{obs}(x) = \mathcal{L} m(x) = \int_{-\infty}^{x} m(x') \, dx'$$

exact

$$m(x) = \mathcal{L}^{-1} d^{obs} = d \frac{d^{obs}}{dx}$$

backprojection

$$m^{(1)}(x) = \mathcal{L}^\dagger d^{obs}(x) = \int_{x}^{\infty} d^{obs}(x') \, dx'$$

crazy!
interpretation as tomography

\[d^{obs}(x) = \int_{-\infty}^{x} m(x') \, dx' \]

\(m \) is slowness
\(d \) is travel time of a ray from \(-\infty\) to \(x \)

backprojection

\[m^{(1)}(x) = \int_{x}^{\infty} d^{obs}(x') \, dx' \]

integrate (=add together) the travel times of all rays that pass through the point \(x \)
discrete analysis

\[Gm = d \]

\[G = U\Lambda V^T \quad G^{-g} = V\Lambda^{-1}U^T \quad G^T = V\Lambda U^T \]

if \(\Lambda^{-1} \approx \Lambda \) then \(G^{-g} \approx G^T \)

backprojection works when the singular values are all roughly the same size
suggests scaling
\[Gm = d \rightarrow WGm = Wd \]
where \(W \) is a diagonal matrix chosen to make the singular values more equal in overall size.

Traveltime tomography:
\[W_{ii} = (\text{length of } \text{ith ray})^{-1} \]

so \([Wd]_i\) has interpretation of the average slowness along the ray \(i \).

Backprojection now adds together the average slowness of all rays that interact with the point \(x \).
Fréchet Derivative

involving a differential equation
Part 4

Fréchet Derivative

involving a differential equation

seismic wave equation
Navier-Stokes equation of fluid flow etc
field \(u \) is related to model parameters \(m \) via a differential equation

\[
\mathcal{L} u(x) = m(x)
\]

data \(d \) is related to field \(u \) via an inner product

\[
d_i = (h_i(x), u(x))
\]
write in terms of perturbations

perturbation δu is related to perturbation δm via a differential equation

$$L \, \delta u(x) = \delta m(x)$$

perturubation δd is related to perturbation δu via an inner product

$$\delta d_i = (h_i(x), \delta u(x))$$
what’s the data kernel?

\[\delta d_i = \int G_i(x) \delta m(x) \, dx = (G_i, \delta m) \]
easy using adjoints

\[\delta d_i = (h_i, \delta u) \]
data inner product with field
easy using adjoints

\[\delta d_i = (h_i, \delta u) \]

data is inner product with field

\[= (h_i, \mathcal{L}^{-1} \delta m) \]

field satisfies \(\mathcal{L} \delta u = \delta m \)
easy using adjoints

data is inner product with field

$$
\delta d_i = (h_i, \delta u) \\
= (h_i, L^{-1} \delta m) \\
= ((L^{-1})^\dagger h_i, \delta m)
$$

field satisfies $$L \delta u = \delta m$$

employ adjoint
easy using adjoints

\[\delta d_i = (h_i, \delta u) \quad \text{data is inner product with field} \]
\[= (h_i, \mathcal{L}^{-1} \delta m) \quad \text{field satisfies } \mathcal{L} \delta u = \delta m \]
\[= ((\mathcal{L}^{-1})^\dagger h_i, \delta m) \quad \text{employ adjoint} \]
\[= ((\mathcal{L}^\dagger)^{-1} h_i, \delta m) \quad \text{inverse of adjoint is adjoint of inverse} \]
easy using adjoints

\[\delta d_i = (h_i, \delta u) \quad \text{data is inner product with field} \]

\[= (h_i, \mathcal{L}^{-1} \delta m) \quad \text{field satisfies } \mathcal{L} \delta u = \delta m \]

\[= ((\mathcal{L}^{-1})^\dagger h_i, \delta m) \quad \text{employ adjoint} \]

\[= ((\mathcal{L}^\dagger)^{-1} h_i, \delta m) \quad \text{inverse of adjoint is adjoint of inverse} \]

\[G_i(x) = (\mathcal{L}^\dagger)^{-1} h_i(x) \quad \text{data kernel} \]
easy using adjoints

\[\delta d_i = (h_i, \delta u) \quad \text{data is inner product with field} \]

\[= (h_i, \mathcal{L}^{-1} \delta m) \quad \text{field satisfies } \mathcal{L} \delta u = \delta m \]

\[= ((\mathcal{L}^{-1})^\dagger h_i, \delta m) \quad \text{employ adjoint} \]

\[= ((\mathcal{L}^\dagger)^{-1} h_i, \delta m) \quad \text{inverse of adjoint is adjoint of inverse} \]

data kernel

\[G_i(x) = (\mathcal{L}^\dagger)^{-1} h_i(x) \]

data kernel satisfies "adjoint differential equation"

\[\mathcal{L}^\dagger G_i(x) = h_i(x) \]
most problem involving differential equations are solved numerically

so instead of just solving

\[\mathcal{L} \delta u(x) = \delta m(x) \]

you must solve

\[\mathcal{L} \delta u(x) = \delta m(x) \quad \text{and} \quad \mathcal{L}^\dagger G_i(x) = h_i(x) \]
so there’s more work

but the same sort of work
example
time \(t \) instead of position \(x \)

field solves a Newtonian-type heat flow equation where \(u \) is temperature and \(m \) is heating

\[L u(t) = \left\{ \frac{d}{dt} + c \right\} u(t) = m(t) \]

data is concentration of chemical whose production rate is proportional to temperature

\[d_i = P(t_i) = b \int_0^{t_i} u(t) \, dt \]
example
time t instead of position x

field solves a Newtonian-type heat flow equation
where u is temperature

$$\mathcal{L} u(t) = \left\{ \frac{d}{dt} + c \right\} u(t) = m(t)$$

data is concentration of chemical whose production rate is proportional to temperature

$$d_i = P(t_i) = b \int_0^{t_i} u(t) \, dt = (bH(t_i-t), u)$$
so $h_i = bH(t_i-t)$
we will solve this problem analytically using Green functions

in more complicated cases the differential equation must be solved numerically
Newtonian equation

\[\mathcal{L}u(t) = \left\{ \frac{d}{dt} + c \right\} u(t) = m(t) \]

its Green function

\[F(t, \tau) = H(t - \tau) \exp\{-c(t - \tau)\} \]
adjoint equation

\[\mathcal{L}^+ u(t) = \left\{ -\frac{d}{dt} + c \right\} g_i(t) = h_i(t) \]

its Green function

\[Q(t, \tau) = H(\tau - t) \exp\{+c(t - \tau)\} \]
note that the adjoint Green function

\[Q(t, \tau) = H(\tau - t) \exp\{+c(t - \tau)\} \]

is the original Green function

\[F(t, \tau) = H(t - \tau) \exp\{-c(t - \tau)\} \]

backward in time

that’s a fairly common pattern whose significance will be pursued in a homework problem
we must perform a Green function integral to compute the data kernel

\[G_i(t) = \int_0^\infty Q(t, \tau) h_i(\tau) \, d\tau = \]

\[= \int_0^\infty H(\tau - t) \exp\{c(t - \tau)\} \, bH(t_i - \tau) \, d\tau = \]

\[= b \int_0^\infty H(\tau - t) \, H(t_i - \tau) \exp\{c(t - \tau)\} \, d\tau = \]

\[= b \int_t^{t_i} \exp\{-c(\tau - t)\} \, d\tau \]
\[G_i(t) = b \int_t^{t_i} \exp\{-c(\tau - t)\} \ d\tau \]

\[= \begin{cases} 0 & t_i \leq t \\ -\frac{b}{c} [\exp\{-c(t_i - t)\} - 1] & t_i > t \end{cases} \]
Part 4

Fréchet Derivative

involving a parameter in differential equation
Part 4

Fréchet Derivative

involving a parameter in
differential equation
previous example

\[\mathcal{L}u(t) = \left\{ \frac{d}{dt} + c \right\} u(t) = m(t) \]

unknown function is “forcing”

another possibility

\[\left\{ \frac{d}{dt} + c(t) \right\} u(t) = f(t) \]

parameter is unknown

forcing is known
linearize around a simpler equation

\[c(t) = c^{(0)} + \delta c(t) \]

\[u(t) = u^{(0)}(t) + \delta u(t), \]

and assume you can solve this equation

\[
\left\{ \frac{d}{dt} + c^{(0)} \right\} u^{(0)}(t) = f(t)
\]
the perturbed equation is

\[
\left\{ \frac{d}{dt} + c^0 + \delta c(t) \right\} \{u^{(0)}(t) + \delta u(t)\} = f(t) \\
\left\{ \frac{d}{dt} + c^0 \right\} u^{(0)}(t) + \left\{ \frac{d}{dt} + c^0 \right\} \delta u(t) + \delta c(t) u^{(0)}(t) + \delta c(t) \delta u(t) = f(t)
\]

subtracting out the unperturbed equation, ignoring second order terms, and rearranging gives ...
then approximately

\[
\left\{ \frac{d}{dt} + c^0 \right\} \delta u(t) = -\delta c(t) \ u^{(0)}(t)
\]

perturbation to parameter acts as an unknown forcing

so it is back to the form of a forcing
and the previous methodology can be applied