
Lecture 21

Continuous Problems

Fréchet Derivatives



Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2 

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches 

Lecture 15 Nonlinear Problems: Newton’s Method 

Lecture 16 Nonlinear Problems:  Simulated Annealing and Bootstrap Confidence Intervals 

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems



Purpose of the Lecture

use adjoint methods to compute 

data kernels



Part 1

Review of Last Lecture



a function

m(x) 

is the continuous analog of a vector 

m



a linear operator

ℒ

is the continuous analog of a matrix 

L



a inverse of a linear operator

ℒ-1

is the continuous analog of the inverse 

of a matrix 

L-1



a inverse of a linear operator

can be used to solve

a differential equation

if ℒm=f then  m=ℒ-1f

just as the inverse of a matrix

can be used to solve

a matrix equation 

if Lm=f then m=L-1f



the inner product

is the continuous analog of dot product

s= aTb



the adjoint of a linear operator

is the continuous analog of the transpose of 

a matrix 

LT

ℒ †



the adjoint can be used to

manipulate an inner product

just as the transpose can be used to 

manipulate the dot product

(La) Tb= a T(LTb)

(ℒa, b) =(a, ℒ†b)



table of adjoints

c(x)

-d/dx

d2/dx2

c(x)

d/dx

d2/dx2



Part 2

definition of the Fréchet derivatives 



first

rewrite the standard inverse theory 

equation in terms of perturbations

a small change in the model

causes a small change in the data



second

compare with the standard formula for 

a derivative



third

identify the data kernel as

a kind of derivative

this kind of derivative is called a

Fréchet derivative



definition of a Fréchet derivative

this is mostly lingo

though perhaps it adds a little insight about

what the data kernel is

,



Part 2

Fréchet derivative of Error 



treat the data as a continuous function d(x)
then the standard L2 norm error is 



let the data d(x) be related to the model m(x)
by 

could be the data kernel integral

=

because integrals are linear operators



to

a perturbation in the model

causes

a perturbation in the error

now do a little algebra to relate



if

m(0) implies d(0) with error E(0)

then ...



if

m(0) implies d(0) with error E(0)

then ...

all this

is just

algebra



if

m(0) implies d(0) with error E(0)

then ...

use δd = ℒδm



if

m(0) implies d(0) with error E(0)

then ...

use adjoint



if

m(0) implies d(0) with error E(0)

then ...

Fréchet derivative of Error 



you can use this derivative to solve and 

inverse problem using the

gradient method



example



example

this is the relationship between 

model and data

d(x) =



example

construct adjoint



example

Fréchet derivative of Error 
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Part 3

Backprojection



continuous analog of least squares



now define the identity operator ℐ

m(x) = ℐ m(x)



view as a recursion



view as a recursion

using the 
adjoint as if it 

were the
inverse



example

backprojection

exact

m(x) = ℒ-1 dobs = d dobs / dx



example

backprojection

exact

m(x) = ℒ-1 dobs = d dobs / dx

crazy!
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interpretation as tomography

backprojection

m is slowness
d is travel time of a ray from –∞ to x

integrate (=add together) the travel times of 
all rays that pass through the point x



discrete analysis

Gm=d

G= UΛVT G-g= VΛ-1UT      GT= VΛUT

if Λ-1≈ Λ then G-g≈ GT

backprojection works when the singular 

values are all roughly the same size



suggests scaling
Gm=d   → WGm=Wd

where W is a diagonal matrix chosen to make the singular 
values more equal in overall size

Traveltime tomography:

Wii =  (length of ith ray)-1 

so [Wd]i has interpretation of the average slowness

along the ray i.

Backprojection now adds together the average slowness of all 
rays that interact with the point x.
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Part 4

Fréchet Derivative

involving a differential equation



Part 4

Fréchet Derivative

involving a differential equation

seismic wave equation
Navier-Stokes equation of fluid flow

etc



data d is related to field u via an inner product

field u is related to model parameters m via 

a differential equation



pertrubation δd is related to perturbation δu via an 

inner product

write in terms of perturbations

perturbation δu is related to perturbation 

δm via a differential equation



what’s the data kernel ?



easy using adjoints

data inner product with field



easy using adjoints

data is inner product with field

field satisfies ℒδu= δm



easy using adjoints

data is inner product with field

field satisfies ℒδu= δm

employ adjoint



easy using adjoints

data is inner product with field

field satisfies ℒδu= δm

employ adjoint

inverse of adjoint is adjoint of
inverse  



easy using adjoints

data is inner product with field

field satisfies ℒδu= δm

employ adjoint

inverse of adjoint is adjoint of
inverse  

data kernel



easy using adjoints

data is inner product with field

field satisfies ℒδu= δm

employ adjoint

inverse of adjoint is adjoint of
inverse  

data kernel

data kernel satisfies “adjoint

differential equation



most problem involving differential 

equations are solved numerically

so instead of just solving

you must solve

and



so there’s more work

but the same sort of work



example
time t instead of position x

field solves a Newtonian-type heat flow equation

where u is temperature and m is heating

data is concentration of chemical whose 

production rate is proportional to temperature



example
time t instead of position x

field solves a Newtonian-type heat flow equation

where u is temperature

data is concentration of chemical whose 

production rate is proportional to temperature

= (bH(ti-t), u)
so hi= bH(ti-t) 



we will solve this problem

analytically

using Green functions

in more complicated cases

the differential equation

must be solved numerically



Newtonian equation

its Green function



adjoint equation

its Green function



note that the adjoint Green function

is the original Green function

backward in time

that’s a fairly common pattern
whose significance will be pursued in a homework 

problem



we must perform a Green function integral

to compute the data kernel
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Part 4

Fréchet Derivative

involving a parameter in

differential equation



Part 4

Fréchet Derivative

involving a parameter in

differential equation



previous example

unknown 
functi on is 
“forcing”

another possibility

forcing 

is knownparameter is 
unknown



linearize around a simpler equation

and assume you can solve this equation



the perturbed equation is

subtracting out the unperturbed equation,
ignoring second order terms, and rearranging gives ...



then approximately

pertubation to 
parameter acts 
as an unknown 

forcing

so it is back to the form of a forcing

and the previous methodology can be applied


