
Lecture 22

Exemplary Inverse Problems

including

Filter Design

Syllabus
Lecture 01 Describing Inverse Problems

Lecture 02 Probability and Measurement Error, Part 1

Lecture 03 Probability and Measurement Error, Part 2

Lecture 04 The L2 Norm and Simple Least Squares

Lecture 05 A Priori Information and Weighted Least Squared

Lecture 06 Resolution and Generalized Inverses

Lecture 07 Backus-Gilbert Inverse and the Trade Off of Resolution and Variance

Lecture 08 The Principle of Maximum Likelihood

Lecture 09 Inexact Theories

Lecture 10 Nonuniqueness and Localized Averages

Lecture 11 Vector Spaces and Singular Value Decomposition

Lecture 12 Equality and Inequality Constraints

Lecture 13 L1 , L∞ Norm Problems and Linear Programming

Lecture 14 Nonlinear Problems: Grid and Monte Carlo Searches

Lecture 15 Nonlinear Problems: Newton’s Method

Lecture 16 Nonlinear Problems: Simulated Annealing and Bootstrap Confidence Intervals

Lecture 17 Factor Analysis

Lecture 18 Varimax Factors, Empircal Orthogonal Functions

Lecture 19 Backus-Gilbert Theory for Continuous Problems; Radon’s Problem

Lecture 20 Linear Operators and Their Adjoints

Lecture 21 Fréchet Derivatives

Lecture 22 Exemplary Inverse Problems, incl. Filter Design

Lecture 23 Exemplary Inverse Problems, incl. Earthquake Location

Lecture 24 Exemplary Inverse Problems, incl. Vibrational Problems

Purpose of the Lecture

solve a few exemplary inverse problems

image deblurring

deconvolution filters

minimization of cross-over errors

Part 1

image deblurring

three point blur

(applied to each row of pixels)

null vectors are highly oscillatory

solve with minimum length

note that GGT can deduced analytically

and is Toeplitz
might lead to a computational advantage

Solution Possibilities

1. Use sparse matrix for G
together with mest=G’*((G*G’)\d)

(maybe damp a little, too)

2. Use analytic version of GGT

together with mest=G’*(GGT\d)

(maybe damp a little, too)

3. Use sparse matrix for G
together with bicg() to solve GGTλ=d
(maybe with a little damping, too)

and then use mest=GTλ

Solution Possibilities

1. Use sparse matrix for G
together with mest=G’*((G*G’)\d)

(maybe damp a little, too)

2. Use analytic version of GGT

together with mest=G’*(GGT\d)

(maybe damp a little, too)

3. Use sparse matrix for G
together with bicg() to solve GGTλ=d
(maybe with a little damping, too)

and then use mest=GTλ

we used the
simplest, which

worked fine

500 1000 1500

200

400

600

800

1000

1200

1400

true image

500 1000 1500

200

400

600

800

1000

1200

1400

blurred image

500 1000 1500

200

400

600

800

1000

1200

1400

reconstructed image

400 600 800

500

600

700

800

900
400 600 800

500

600

700

800

900
400 600 800

500

600

700

800

900

image blurred due to camera motion
(100 point blur)

500 1000 1500

200

400

600

800

1000

1200

1400

true image

500 1000 1500

200

400

600

800

1000

1200

1400

blurred image

500 1000 1500

200

400

600

800

1000

1200

1400

reconstructed image

400 600 800

500

600

700

800

900
400 600 800

500

600

700

800

900
400 600 800

500

600

700

800

900

(A) (B) (C)

(D) (E) (F)

pixel number pixel number pixel number

p
ix

el
 n

u
m

b
er

p
ix

el
 n

u
m

b
er

pixel number

[G
-g

] 7
2

8

0 200 400 600 800 1000 1200 1400
-50

0

50

row

g
e
n
e
ra

liz
e
d
 i
n
v
e
rs

e

0 200 400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

row

g
e
n
e
ra

liz
e
d
 i
n
v
e
rs

e
R

7
2

8

row number

row number

(A)

(B)

sidelobes

Part 2

deconvolution filter

Convolution

general relationship for

linear systems

with translational invariance

Convolution

general relationship for

linear systems

with translational invariance

model m(t)
and

data d(t)
related by linear operator

Convolution

general relationship for

linear systems

with translational invariance

only relative time
matters

underlying principle

linear superposition

time , t, after impulse

d
(t

)=
 g

(t
)

0

time , t, after impulse

m
(t

)=
δ(

t)

0

If the input of a spike m(t)=δ(t)

spike

causes the output of d(t)=g(t)

m(t0)g(t-t0)

m
(t

)

time, t
t0

d
(t

)

time, t
t0

spike of amplitude, m(t0)

Then the general input m(t)

causes the general output d(t)=m(t)*g(t)

convolution d=m*g

discrete convolution d=m*g

standard matrix from d=Gm

seismic reflection sounding

want airgun pulse to be as spiky as

possible

p(t) = g(t) * r(t)

pressure = airgun pulse * sea floor response

so as to be able to detect pulses
in sea floor response

p(t) ≈ r(t)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

time, t

x
(t

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

time, t

g
in

v
(t

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

time, t

g
*g

in
v
(t

)

time, t

g(
t)

actual airgun pulse is ringy

so construct a deconvolution filter m(t)
so that

g(t) *m(t) = δ(t)

and apply it to the data

p(t)*m(t) = g(t)*m(t)*r(t) = r(t)

p(t) =g(t) * r(t)

g(t) *m(t) = δ(t)

and apply it to the data

p(t)*m(t) = g(t)*m(t)*r(t) = r(t)

p(t) =g(t) r(t)

this is the
equation we
need to solve

so construct a deconvolution filter m(t)
so that

1
0

0

g(t) *m(t) = δ(t)

Gm = d

discrete
approximation of

delta function

m =

use discrete approximation of convolution

...

solve with damped least squares

mest = [GTG + ε2I]-1 GTd

with d = [1, 0, 0, ..., 0]T

(or something similar)

matrices GTG and GTd can
be calculated analytically

approximately Toeplitz with elements

approximately Toeplitz with elements

autocorrelation
of g

cross-correlation
of g and d

Solution Possibilities
1. Use sparse matrix for G

together with mest=(G’*G)\(G’*d)

(maybe damping a little, too)

2. Use analytic versions of GTG and GTd
together with mest=GTG\GTd

(maybe damp a little, too)

3. Never form G, just work with its columns, g
use bicg() to solve GTG m = GTd
but use conv() to compute GT(Gv)

4. Same as 3 but add a priori information of
smoothness

Solution Possibilities
1. Use sparse matrix for G

together with mest=(G’*G)\(G’*d)

(maybe damping a little, too)

2. Use analytic versions of GTG and GTd
together with mest=GTG\GTd

(maybe damp a little, too)

3. Never form G, just work with its columns, g
use bicg() to solve GTG m = GTd
but use conv() to compute GT(Gv)

4. Same as 3 but add a priori information of
smoothness

we used this
complicated but
very fast method

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1

time, t

x
(t

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

time, t

g
in

v
(t

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.5

0

0.5

time, t

g
*g

in
v
(t

)

time, t

time, t

time, t

g(
t)

m
(t

)
m

(t
)*

g(
t)

(A)

(B)

(C)

(A) Original

0.5 1 1.5 2 2.5 3

-2

0

2

time, t

d
(g

)

0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

time, t

(B) After deconvolution

d
(t

)
d

(t
)*

m
(t

)

Part 3

minimization of cross-over errors

2 4 6 8

2

4

6

8

true gravity

2 4 6 8

2

4

6

8

tracks

2 4 6 8

2

4

6

8

obs gravity

2 4 6 8

2

4

6

8

pre gravity

longitude

la
ti

tu
d
e

la
ti

tu
d
e

true

estimated

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

pre gravity

-50

0

50

100

g
ra

v
it

y
 a

n
o

m
al

y,
 m

g
al

longitude

note streaks

general idea

data s is measured along tracks

data along each track is off by an additive constant

theory

sj
obs (track i) = sj

true (track i) + m(track i)

goal is to estimate the constants by minimizing the

error at track intersections

5

6

7

8

1

2
3

4

cross-over

points

ith intersection has

ascending track Ai and descending track Di

sAi
obs= sAi

true + mAi

sDi
obs= sDi

true + mDi

subtract

sAi
obs-sDi

obs= mAi- mDi

has form

d=Gm

the matrix G is very sparse

every row is all zeros, except for a
single +1 and a single -1

note that this problem has an inherent

non-uniqueness

m is determined only to an overall

additive constant

one possibility is to use damped least

squares, to choose the smallest m

(you can always add a constant later)

the matrices GTG and GTd can be
calculated semi-analytically

recipe

starting with zeroed GTG and GTd

Solution Possibilities
1. Use sparse matrix for G

together with damped least squares
mest=(G’*G+e2*speye(M,M))\(G’*d)

2. Use analytic versions of GTG and GTd
add damping directly to the diagonal of GTG
then use mest=GTGpe2I\GTd

3. Use sparse matrix for G
together with bicg() version of damped least squares

4. Methods 1 or 2, but use hard constraint instead of
damping to implement Σi mi = 0

Solution Possibilities
1. Use sparse matrix for G

together with damped least squares
mest=(G’*G*e2*speye(M,M))\(G’*d)

2. Use analytic versions of GTG and GTd
add damping directly to the diagonal of GTG
then use mest=GTG\GTd

3. Use sparse matrix for G
together with bicg() version of damped least
squares

4. Methods 1 or 2, but use hard constraint instead of
damping

our choice

2 4 6 8

2

4

6

8

true gravity

2 4 6 8

2

4

6

8

tracks

2 4 6 8

2

4

6

8

obs gravity

2 4 6 8

2

4

6

8

pre gravity

longitudelongitude

la
ti

tu
d
e

la
ti

tu
d
e

la
ti

tu
d
e

la
ti

tu
d
e

(A) (B)

(D)(C)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

pre gravity

-50

0

50

100

g
rav

ity
 an

o
m

aly, m
g

al

longitude longitude

