
Lecture 22

Exemplary Inverse Problems

including

Filter Design
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Purpose of the Lecture

solve a few exemplary inverse problems 

image deblurring

deconvolution filters

minimization of cross-over errors



Part 1

image deblurring



three point blur

(applied to each row of pixels)



null vectors are highly oscillatory



solve with minimum length



note that GGT can deduced analytically

and is Toeplitz
might lead to a computational advantage



Solution Possibilities

1. Use sparse matrix for G
together with mest=G’*((G*G’)\d)

(maybe damp a little, too)

2. Use analytic version of GGT

together with mest=G’*(GGT\d)

(maybe damp a little, too)

3. Use sparse matrix for G
together with bicg() to solve GGTλ=d
(maybe with a little damping, too)

and then use mest=GTλ



Solution Possibilities

1. Use sparse matrix for G
together with mest=G’*((G*G’)\d)

(maybe damp a little, too)

2. Use analytic version of GGT

together with mest=G’*(GGT\d)

(maybe damp a little, too)

3. Use sparse matrix for G
together with bicg() to solve GGTλ=d
(maybe with a little damping, too)

and then use mest=GTλ

we used the 
simplest, which 

worked fine
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Part 2

deconvolution filter



Convolution

general relationship for

linear systems

with translational invariance 



Convolution

general relationship for

linear systems

with translational invariance 

model m(t)
and

data d(t)
related by linear operator



Convolution

general relationship for

linear systems

with translational invariance 

only relative time 
matters



underlying principle

linear superposition



time , t, after impulse

d
(t

)=
 g

(t
)

0

time , t, after impulse

m
(t

)=
δ(

t)

0

If the input of a spike m(t)=δ(t)

spike 

causes the output of d(t)=g(t)



m(t0)g(t-t0)

m
(t

)

time, t
t0

d
(t

)

time, t
t0

spike of amplitude, m(t0)

Then the general input m(t)

causes the general output d(t)=m(t)*g(t)



convolution d=m*g



discrete convolution d=m*g

standard matrix from d=Gm



seismic reflection sounding





want airgun pulse to be as spiky as 

possible

p(t)        =         g(t)      *                        r(t) 

pressure = airgun pulse   * sea floor response

so as to be able to detect pulses
in sea floor response

p(t)    ≈ r(t) 
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so construct a deconvolution filter m(t)
so that 

g(t) *m(t) =  δ(t) 

and apply it to the data

p(t)*m(t)  = g(t)*m(t)*r(t) = r(t)  

p(t) =g(t) * r(t) 



g(t) *m(t) =  δ(t) 

and apply it to the data

p(t)*m(t)  = g(t)*m(t)*r(t) = r(t)  

p(t) =g(t) r(t) 

this is the 
equation we 
need to solve

so construct a deconvolution filter m(t)
so that 



1
0

0

g(t) *m(t) =  δ(t) 

Gm = d

discrete 
approximation of 

delta function

m =

use discrete approximation of convolution

...



solve with damped least squares

mest = [GTG + ε2I]-1 GTd

with d = [1, 0, 0, ..., 0]T

(or something similar)

matrices GTG and GTd can 
be calculated  analytically





approximately Toeplitz with elements



approximately Toeplitz with elements

autocorrelation
of g





cross-correlation
of g and d



Solution Possibilities
1. Use sparse matrix for G

together with mest=(G’*G)\(G’*d)

(maybe damping a little, too)

2. Use analytic versions of GTG and GTd
together with mest=GTG\GTd

(maybe damp a little, too)

3.  Never form G, just work with its columns, g
use bicg() to solve GTG m = GTd
but use conv() to compute GT(Gv)

4. Same as 3 but add a priori information of
smoothness



Solution Possibilities
1. Use sparse matrix for G

together with mest=(G’*G)\(G’*d)

(maybe damping a little, too)

2. Use analytic versions of GTG and GTd
together with mest=GTG\GTd

(maybe damp a little, too)

3.  Never form G, just work with its columns, g
use bicg() to solve GTG m = GTd
but use conv() to compute GT(Gv)

4. Same as 3 but add a priori information of
smoothness

we used this 
complicated but 
very fast method
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Part 3

minimization of cross-over errors
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general idea

data s is measured along tracks

data along each track is off by an additive constant

theory

sj
obs (track i) = sj

true (track i) + m(track i)

goal is to estimate the constants by minimizing the 

error at track intersections
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ith intersection has

ascending track Ai and descending track Di

sAi
obs= sAi

true + mAi

sDi
obs= sDi

true + mDi

subtract

sAi
obs-sDi

obs= mAi- mDi

has form

d=Gm



the matrix G is very sparse

every row is all zeros, except for a 
single +1 and a single -1



note that this problem has an inherent 

non-uniqueness

m is determined only to an overall 

additive constant

one possibility is to use damped least 

squares, to choose the smallest m

(you can always add a constant later)



the matrices GTG and GTd can be 
calculated semi-analytically





recipe

starting with zeroed GTG and GTd



Solution Possibilities
1. Use sparse matrix for G

together with damped least squares 
mest=(G’*G+e2*speye(M,M))\(G’*d)

2. Use analytic versions of GTG and GTd
add damping directly to the diagonal of GTG
then use mest=GTGpe2I\GTd

3. Use sparse matrix for G
together with bicg() version of damped least squares

4. Methods 1 or 2, but use hard constraint instead of 
damping to implement Σi mi = 0



Solution Possibilities
1. Use sparse matrix for G

together with damped least squares 
mest=(G’*G*e2*speye(M,M))\(G’*d)

2. Use analytic versions of GTG and GTd
add damping directly to the diagonal of GTG
then use mest=GTG\GTd

3. Use sparse matrix for G
together with bicg() version of damped least 
squares

4. Methods 1 or 2, but use hard constraint instead of 
damping

our choice
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