
Lecture 23

Exemplary Inverse Problems

including

Earthquake Location
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Purpose of the Lecture

solve a few exemplary inverse problems 

thermal diffusion

earthquake location

fitting of spectral peaks



Part 1

thermal diffusion
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temperature due to M cooling slabs
(use linear superposition)



temperature due to M slabs
each with initial temperature mj

temperature 
measured at 

time t>0
initial

temperature



inverse problem
infer initial temperature m

using temperatures measures at a suite of xs
at some fixed later time t

d = G m

data model 

parameters
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What  Method ?

The resolution is likely to be rather poor, especially 

when data are collected at later times

damped least squares

G-g = [GTG+ε2I]-1GT

damped minimum length

G-g = GT [GGT+ε2I]-1

Backus-Gilbert



What  Method ?

The resolution is likely to be rather poor, especially 

when data are collected at later times

damped least squares

G-g = [GTG+ε2I]-1GT

damped minimum length

G-g = GT [GGT+ε2I]-1

Backus-Gilbert

actually, these 
generalized 
inverses are  

equal



What  Method ?

The resolution is likely to be rather poor, especially 

when data are collected at later times

damped least squares

G-g = [GTG+ε2I]-1GT

damped minimum length

G-g = GT [GGT+ε2I]-1

Backus-Gilbert might produce solutions 
with fewer artifacts



Try both

damped least squares

Backus-Gilbert



Solution Possibilities
1. Damped Least Squares:

Matrix G is not sparse

no analytic version of GTG is available

M=100 is rather small

experiment with values of ε2

mest=(G’*G+e2*eye(M,M))\(G’*d)

2. Backus-Gilbert

use standard formulation, with damping α
experiment with values of α



Solution Possibilities
1. Damped Least Squares:

Matrix G is not sparse

no analytic version of GTG is available

M=100 is rather small

experiment with values of ε2

mest=(G’*G+e2*eye(M,M))\(G’*d)

2. Backus-Gilbert

use standard formulation, with damping α
experiment with values of α

try both
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earlier times
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is similar
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Part 2

earthquake location
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vibrations travel from source to receiver along 

curved rays
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ray approximation
vibrations travel from source to receiver along 

curved rays

P wave

faster

S wave

slower

P, S ray paths not necessarily the 

same, but usually similar



z

x

P

S

s

r

TS = ∫ray (1/vS) d𝓁

travel time T
integral of slowness along ray path

TP = ∫ray (1/vP) d𝓁



arrival time = travel time along ray + origin time



arrival time = travel time along ray + origin time

data data

earthquake

location

3 model 

parameters

earthquake

origin time

1 model 

parameter



arrival time = travel time along ray + origin time

explicit nonlinear equation

4 model parameters

up to 2 data per station



arrival time = travel time along ray + origin time

linearize around trial 

source location x(p)

ti
P = Ti

P(x(p),x(i)) + [∇Ti
P] • ∆x + t0

trick is computing this gradient



x(0)

x(1)

x(1)

x(0)

r r

Δx
Δx

Geiger’s principle

[∇Ti
P] = -s/v

unit vector parallel to ray pointing 

away from receiver



linearized equation



z
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z
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All rays leave source at the same angle

All rays leave source at nearly the same angle

Common circumstances when earthquake far from stations



then, if only P wave data is available

these two columns are

proportional to one-another

(no S waves)



z

x

depth and origin time trade off

shallow and early

deep and late



Solution Possibilities

1. Damped Least Squares:

Matrix G is not sparse

no analytic version of GTG is available

M=4 is tiny

experiment with values of ε2

mest=(G’*G+e2*eye(M,M))\(G’*d)

2. Singular Value Decomposition

to detect case of depth and origin time trading off

test case has 
earthquakes 

“inside of array”
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Part 3

fitting of spectral peaks
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what shape are the peaks?



what shape are the peaks?

try both
use F test to test whether one is better than the other



what shape are the peaks?

data

3 unknowns
per peak

data

3 unknowns
per peak

both cases:
explicit nonlinear problem



linearize using analytic gradient



linearize using analytic gradient



issues

how to determine

number q of peaks

trial Ai ci fi of each peak



our solution

have operator click mouse 

computer screen

to indicate position of each peak



MatLab code for graphical input

K=0;

for k = [1:20]

p = ginput(1);

if( p(1) < 0 )

break;

end

K=K+1;

a(K) = p(2)-A;

v0(K)=p(1);

c(K)=0.1;

end
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Results of F test

Fest = E_normal/E_lorentzian: 4.230859

P(F<=1/Fest||F>=Fest) = 0.000000

Lorentzian better fit
to 99.9999% certainty


