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Purpose of the Lecture

solve a few exemplary inverse problems 

tomography

vibrational problems

determining mean directions



Part 1

tomography



di = ∫ray i m(x(s), y(s))  ds

tomography:

data is line integral of model function

assume 
ray path 
is known

x

y



discretization:

model function divided up into M pixels mj



data kernel

Gij = length of ray i in pixel j



data kernel

Gij = length of ray i in pixel j

here’s an easy,
approximate way to 

calculate it



start with G set to zero

then consider each ray in sequence



∆s

divide each ray into segments of arc length ∆s

and step from segment to segment 



determine the pixel index, say j, that the center

of each line segment falls within

add ∆s to Gij

repeat for every segment of every ray



You can make this approximation 

indefinitely accurate simply by

decreasing the size of ∆s

(albeit at the expense of increase the 

computation time)



Suppose that there are M=L2 voxels

A ray passes through about L voxels

G has NL2 elements

NL of which are non-zero

so the fraction of non-zero elements is

1/L

hence

G is very sparse



In a typical tomographic experiment

some pixels will be missed entirely

and some groups of pixels will be sampled 

by only one ray 



In a typical tomographic experiment

some pixels will be missed entirely

and some groups of pixels will be sampled 

by only one ray 

the value of these pixels is completely undetermined

only the average value of these pixels is determined

hence the problem is mixed-determined
(and usually M>N as well)



so

you must introduce some sort of a priori 

information to achieve a solution

say

a priori information that the solution is 

small

or

a priori information that the solution is 

smooth



Solution Possibilities
1. Damped Least Squares (implements smallness):

Matrix G is sparse and very large

use bicg() with damped least squares function

2. Weighted Least Squares (implements smoothness):

Matrix F consists of G plus

second derivative smoothing

use bicg()with weighted least squares function



Solution Possibilities
1. Damped Least Squares:

Matrix G is sparse and very large

use bicg() with damped least squares function

2. Weighted Least Squares:

Matrix F consists of G plus

second derivative smoothing

use bicg()with weighted least squares function

test case has very 
good ray coverage, 

so smoothing 
probably 

unnecessary
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Lesson from Radon’s Problem:

Full data coverage need to achieve exact solution

minor data 

gaps
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but what if the observational 

geometry is poor

so that broads swaths of rays are 

missing ?
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Part 2

vibrational problems



statement of the problem

Can you determine the structure of an object

just knowing the

characteristic frequencies at which it vibrates?

frequency



the Fréchet derivative

of frequency with respect to velocity 

is usually computed using perturbation theory

hence a quick discussion of what that is ...



perturbation theory

a technique for computing an approximate solution to 

a complicated problem, when

1. The complicated problem is related to a simple 

problem by a small perturbation

2. The solution of the simple problem must be known



simple example





we know the 

solution to this 

equation: x0=±c









Here’s the actual vibrational problem

acoustic equation with

spatially variable sound velocity v



acoustic equation with

spatially variable sound velocity v

frequencies of vibration

or

eigenfrequencies

patterns of vibration

or

eigenfunctions

or

modes



v(x) = v(0)(x) + εv(1)(x) + ...

assume velocity can be written as a 

perturbation

around some simple structure

v(0)(x)



eigenfunctions known to obey 

orthonormality relationship



now represent eigenfrequencies and 

eigenfunctions as power series in ε



represent first-order 

perturbed shapes as sum of

unperturbed shapes

now represent eigenfrequencies and 

eigenfunctions as power series in ε



plug series into original differential 

equation

group terms of equal power of ε

solve for first-order perturbation
in eigenfrequencies ωn

(1)

and eigenfunction coefficients bnm

(use orthonormality in process)



result



result for eigenfrequencies

write as standard inverse problem



standard continuous inverse problem



standard continuous inverse problem

perturbation in the 
eigenfrequencies are 

the data

perturbation in the 
velocity structure is
the model function



standard continuous inverse problem

depends upon the
unperturbed velocity structure,
the unperturbed eigenfrequency

and the unperturbed mode

data kernel or Fréchet derivative



1D organ pipe

unperturbed problem has 

constant velocity

0

h
x

open end,

p=0

closed  end

dp/dx=0

perturbed problem has 

variable velocity
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solution to unperturbed problem



position , x

ve
lo

ci
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, v
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How to discretize the model function?

m is veloctity function evaluated at sequence of 

points equally spaced in x

our choice is very simple
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a list of frequencies of vibration

true, unperturbed
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observed = true, perturbed + noise

frequency



ωi

mj

the data kernel



Solution Possibilities
1. Damped Least Squares (implements smallness):

Matrix G is not sparse

use bicg() with damped least squares function

2. Weighted Least Squares (implements smoothness):

Matrix F consists of G plus

second derivative smoothing

use bicg()with weighted least squares function



Solution Possibilities
1. Damped Least Squares (implements smallness):

Matrix G is not sparse

use bicg() with damped least squares function

2. Weighted Least Squares (implements smoothness):

Matrix F consists of G plus

second derivative smoothing

use bicg()with weighted least squares function

our choice
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mi

mj

the model resolution matrix



mi

mj

the model resolution matrix

what is this?



This problem has a type of 

nonuniqueness

that arises from its symmetry

a positive velocity anomaly at one end 

of the organ pipe

trades off with a negative anomaly at 

the other end



this behavior is very common

and is why eigenfrequency data

are usually supplemented with other data

e.g. travel times along rays

that are not subject to this nonuniqueness



Part 3

determining mean directions



statement of the problem

you measure a bunch of directions (unit vectors)

what’s their mean?
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what’s a reasonable

probability density function

for directional data?

Gaussian doesn’t quite work
because

its defined on the wrong interval
(-∞, +∞)



θ

ϕ

coordinate system

distribution should be symmetric in ϕ
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solve by

direct application of

principle of  maximum likelihood



maximize joint p.d.f. of data

with respect to
κ and cos(θ)



x: Cartesian components of 

observed unit vectors

m: Cartesian components of central 

unit vector; must constrain |m|=1



likelihood function

constraint

unknowns

m, κ

C = = 0 



Lagrange multiplier equations



Results

valid when κ>5



Results

central vector is parallel to 
the vector that you get by 
putting all the observed 
unit vectors end-to-end



Solution Possibilities
Determine m by evaluating simple formula

1. Determine κ using simple but approximate formula

2. Determine κ using bootstrap method

our choice

only valid when κ>5



Application to Subduction Zone Stresses

Determine the mean direction of

P-axes

of deep (300-600 km) earthquakes
in the Kurile-Kamchatka subduction zone
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