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Abstract.  A new method is presented for estimating the frequency-dependent phase velocity of ambient 

noise cross-spectra by waveform fitting of Aki’s formula.  It employs a three-parameter grid search to 

determine an initial model, followed by generalized least-squares refinement.  The smoothness of the 

estimated phase velocity is controlled by adjusting a prior variance. In addition to estimating the 

frequency-dependent phase velocity function, the method calculates its variance and resolution.  The 

method is robust to low noise levels, and so its use may prove especially attractive in cases where short 

array-deployment times limit the quality of cross-spectral estimates. 

Introduction 

During the last decade, the development of ambient noise-correlation techniques for 

reconstructing surface waves propagating between stations has opened up new opportunities for seismic 

imaging (Shapiro and Campillo, 2004; Shapiro et al. 2005; Calkins et al., 2011).  The response of the 

earth at one seismic station due to a virtual source at another can now be routinely calculated by cross-

correlating ambient noise observed at the two stations (Snieder, 2004).  While this correlogram contains, 

in principle, all the usual seismic phases, noise levels have so far limited most studies to Love and 

Rayleigh waves (surface waves), because they have the highest signal-to-noise ratio.  Considerable effort 

has been put into methods for rapid and accurate computation of the correlograms (Bensen et al., 2007). 

At a given period, the path-averaged dispersion function represents the average phase velocity of 

the surface wave as it propagates from one station to another.  In many cases, the propagation path is 

adequately approximated by the straight-line ray connecting the two stations.  Two-dimensional 

traveltime tomography can then be used to estimate phase velocity as a function of position on the earth’s 

surface, which in turn can be inverted for shear velocity in three three-dimensions. The revolutionary 

aspect of ambient noise correlation is that the number of rays tends to be much larger, and the spatial and 

azimuthal coverage of rays tends to be much better, than traditional natural-source methods.  The 



resulting tomographic images often have sufficiently high resolution to permit detailed structural 

interpretations. 

Another advantage of ambient noise correlation over natural-source methods is the ablity to 

retrieve the phase velocity at high frequencies. Unlike an earthquake source, the ambient noise virtual 

source has the best signal-to-noise ratio around the micro-seismic frequency band (~100 mHz). The actual 

frequency band of ambient noise cross-correlation in which phase velocity is retrievable is also controlled 

by the interstation distance. The time domain methods usually require interstation spacing being larger 

than three wavelength for a given period (Bensen et al., 2007), while freuqency domain methods partly 

work around this limitation and reduce it to 1-2 wavelength (Ekstrom et al., 2009).  

A key element of the imaging process is estimating frequency-dependent phase velocity      

where   is angular frequency, from the correlograms. As pointed out by Ekstrom et al. (2009), this 

process can be expedited by working in the frequency domain, since an analytic formula for the cross-

spectrum (the Fourier transform of the correlogram) is known (Aki, 1957): 

          
   

    
               

(1) 

Here   is angular frequency and    is inter-station distance. We have added the amplitude factor   to 

allow for the possibility that an observed cross-spectrum may not be correctly normalized. 

Ekstrom et al. (2009) demonstrate that this formula can be used to determined the phase velocity 

at the frequencies, say         , at which the cross-spectrum is zero: 

                                             
   

    
   

(2) 



Here    is the  -th zero of the Bessel function; that is,         . Owing to the finite bandwidth of 

observations, the observed cross-spectrum         is typically measured only for a finite frequency 

band, and so only a subset of zero-crossings can be estimated. The integer   is introduced to correlate the 

lowest observed zero of the cross-spectrum with the corresponding zero of the Bessel function.  While the 

value of   is not immediately known, Ekstrom et al. (2009) develop a trial-and-error procedure for 

determining it, based on prior bounds on the phase velocity; that is, an incorrect value for   leads to an 

implausible estimate of   .  Once the phase velocity is known at a sequence of discrete frequencies, its 

value at other frequencies can be estimated by interpolation. 

The most significant limitation of the zero-crossing method is that it performs poorly at high 

noise levels. Noise causes spurious zeros in         , which lead to an erroneous determination of phase 

velocity.  Sometimes, this problem can be recognized because it causes implausible sharp jumps in the 

estimated phase velocity curve; however, the problem is difficult to correct in an automated way. 

Another limitation of the zero-crossing method is on its ability to deal with the station pairs with 

small interstation distance. For these station pairs, the number of true cross-spectrum         zero-

crossing in the interested bandwidth is limited (Figure 4a), hence damaging the accuracy and resolution of 

the interpolated phase velocity curve after interpolation. 

Aki’s formula (1) predicts the complete functional form of the cross-spectrum, not just the 

location of the zero crossings.  We show below that additional information about the phase velocity can 

be determined via “waveform fitting”; that is, determining the phase velocity      and amplitude   that 

match the predicted cross-spectrum         to the observed cross-spectrum,        . 

Least Squares Estimation of the Cross Spectrum 

Our method is based on minimizing the    error, 



                         
    

    

 

(3) 

between the observed cross-spectrum         and the one predicted by Aki’s formula,        . Here, 

            is the interested frequency-band of the observations.  Additional constraints can be 

imposed on the minimization, such as           (the zero crossing estimates are approximately 

satisfied), or            (the phase velocity smoothly varies with frequency), or both.  In addition to 

providing an estimate of phase velocity at all frequencies, as contrasted to just the frequencies of the zero-

crossings, this method provides formal estimates of its variance and resolution. 

We solve the minimization problem by first approximating the cross-spectrum and phase velocity 

as frequency series   and  , respectively, say with  values and with frequency spacing    between      

and     . The phase velocity   and amplitude   can be grouped into a model parameter vector   

     .  Initially, this vector is unknown, but we assume that we have an initial estimate of it,      

           . Ekstrom et al.’s (2009) zero-crossing method could be used to provide this initial estimate; 

however, in the next section, we put forward an alternative grid-search method that performs especially 

well at high noise levels. 

 

The data,     , are assumed to contain noise that is normally-distributed with variance   
 .  The 

data equation,             , which asserts that the observed and predicted cross-spectra are equal, is 

non-linear, so we linearize it around an estimate solution      (with     being the initial estimate). 

This process leads to the linear equation        , which links the deviation of the solution from the 

estimate,          , to the deviation of the data to that predicted by the estimate         

          . The data kernel   consists of the derivatives: 

 



    

 
 
 

 
     

   
 
         

          
   

       
     

   

  
   

                                  

    

  
 
         

      
   

     
                          

  

 

 (4) 

We add two additional linear equations, which represent prior expectations about the phase 

velocity.  The first equation,              seeks a model that is close to some prior phase velocity,   .  

This equation serves to keep the estimated phase velocities within a plausible range. We choose a    with 

a very simple shape - a straight line fit to      - so not add unnecessary detail into the model.  We also 

assign it very high variance,   
 .  The second equation,     , imposes smoothness on the phase 

velocities. Here   is the discrete form of the second derivative operator: 

    

 
 

 
                      

                   

                   
          

      

(5) 

We assign this equation a variance of   
 ; the smaller its value, the smoother is the phase velocity 

curve. The three equations can be grouped into single generalized least squares equation: of the form 

      : 

      

  
   

  
   

  
   

      

  
    

  
           

   
       

    

(6) 

The iterative Generalize Least Squares solution is then obtained by iterating the formulas: 



        
  

                            

with              until convergence is reached (e.g. Menke, 2012).  The covariance of the solution 

can be approximated as 

    
                

                
       

  
 

(7) 

and the resolution matrix as     
     

        
      

      
  

   .  

Grid Search for Initial Solution 

The phase velocities of seismic surface waves generally lie within a narrow range of plausible 

values that are controlled by the shear velocity of the earth’s crust and upper mantle, which themselves 

typically lie with their own narrow range.  Furthermore, phase velocity tends to vary smoothly with 

frequency, reflecting the way in which these long-wavelength waves average earth structure.  

Consequently, a typical phase velocity curve can be approximated by its values at just a few frequencies, 

with other values filled in by linear interpolation.  This situation makes a grid search an extremely 

effective way of determining an initial model, which can then be refined by iterative least squares (as 

described in the previous section). 

We begin by defining lower and upper bounds,    and   , respectively, between which the phase 

velocity is presumed to lie.  We then define   frequency nodes at which the phase velocity is specified 

and   values which it can take at each node.  We must then search through    phase velocity curves to 

find the one with minimum error.  Note that we do not need to perform a grid search over amplitude,  , 

since it can be computed by least squares, once phase velocity is specified: 

                                                



(8) 

In order to assess the error of each phase velocity curve, we must linearly interpolate it from   to 

  frequencies, evaluate           by computing a Bessel function, estimate   by least squares and 

evaluate the error        with                 .  The overall computational effort for a single 

model is modest. It can be further optimized by tabulating the Bessel function, so that only a table-

lookup, and not a function call, is required to evaluate it. 

We have been successful in performing the grid search on a notebook computer of modest 

computational capacity for     and     ,.  The main requirement of an initial model is not that it fit 

the cross-spectrum especially well, but that that it fit it without any cycle-skips, so that the least-squares 

algorithm converges to global minimum.  As we show in the example below, the    ,      case 

produces initial models that are more than adequate from this perspective. 

Example 

We apply the method to a dataset of       cross-spectra derived from a combination of land 

and ocean bottom seismometer stations on and near Papua New Guinea, which were operated for a period 

of about one and half year starting in March 2010, as part of the CDPAPUA experiment.  The cross-

spectra were computed by the method described by Ekstrom et al. (2009), and have acceptable signal-to-

noise ratio (s.n.r.) in the 0.05 to 0.125 frequency band (N=271 frequencies).  This dataset provides an 

excellent test case, because the region is structurally complex, leading to phase velocity curves with a 

wide range of shapes, and because it includes examples of both high-quality and low-quality cross-spectra 

(figure 1). Tomographic images based on the estimated phase velocity curves are presented in (Jin et al. 

2014) and are not discussed here. 

We perform two sets of grid searches to produce initial estimates of the phase velocity, a three-

point grid search with              and a four-point search with              (figure 2).  In both 



cases, we use prior bounds    and    that have a relatively narrow range of 3.2-3.6 km/s at the lowest 

frequency, widening to 2.75-3.4 km/s at the highest.  These choices reflect our belief that the phase 

velocity curves have normal dispersion and that shallow earth structure, which preferentially affects the 

higher frequencies, is the most variable.  Well-chosen bounds are especially important to prevent cycle-

skips in noisiest of the cross-spectra.  Comparison of the error reduction of the three-point and four-point 

searches indicates that former performed nearly as well as the latter (figure 2, A-B); an acceptable initial 

estimate of phase velocity can be obtained through a three-point grid search. 

We have also experimented with a grid search that minimizes an    measure of error,   

       , in order to assess whether it leads to better fits, especially for the nosier cross-spectra.  Only two 

code modifications are needed: one in the formula for error, and another to replace the least-squares 

calculation of the amplitude,  , by one that minimizes the    error.  Since this is a one-parameter 

minimization, we compute   using a steepest-descent method based on the derivative: 

  

  
  

 

  
    

       
    

 

      
   

 

      
       

     

(9) 

Tests indicate that the    method (figure 2, C-D) performs no better than the    method (figure 2, A-B).  

The    method is preferred since it requires less computational effort. 

The initial estimate of the solution is then refined using generalized least squares. The method is 

dependent upon two ratios,      
   

   and      
   

  . The parameter    controls the deviation of the 

phase velocity curve from the prior model, and the parameter    controls its smoothness.  After some 

experimentation, we settled upon         and      .  While the estimated phase velocity does not 

depend upon the actual value of the covariance of the cross-spectra,   
 , its estimated covariance does. We 

use a posterior estimate based on the    error of the fit: 

  
      



(10) 

This variance is used to determine the covariance of the phase velocity,   , via the standard error 

propagation formula  (7). The resulting error in the phase velocity,   , which is in the 0.01 to 0.05 km/s 

range, corresponds to signal-to-noise ratios in the cross-spectra in the 2:1 to 10:1 range.   

The iterative refinement generally leads to only modest (10%) improvement in the fit (figure 2B), 

but removes the implausible kinks in the phase velocity curves introduced by the simple parameterization 

of the grid search (figure 4).  In a small percentage of cases, the error increased slightly during the 

refinement. In most of these cases, the increase in error is due to the smoothness condition imposed on the 

phase velocity curve during the iterative refinement (but not during the grid search); requiring smoothness 

slightly degrades the quality of the fit.  In a few other cases, the solution falls into a local minimum and 

develops a cycle-slip.  The entire estimation process, implemented in MALTAB and including the three-

point grid search, took about 2.5 hours on a notebook computer of modest computational power. 

Due to the smoothing, the     confidence intervals of the estimated phase velocity are very 

small, about       km/s at a signal-to-noise ratio of 2:1 (figure 4B).  The corresponding resolution is 

poor - about 0.03 Hz – owing to the trading off of resolution and variance that is inherent in all inverse 

problems (figure 4C-F).  A test case (not shown) with      led to larger but still acceptable confidence 

intervals (      km/s)) and better resolution (0.01 Hz). However, the estimated phase velocity function 

contained more detail than the data quality seemed to warrant. 

The resolving kernel is bimodal when the target frequency    aligns with a minimum or maximum 

(extremum) in the cross spectrum (figure 4D).  This undesirable shape – a unimodal curve would be 

preferred - is due to an inherent limitation of this type of inverse problem. The inversion process perturbs 

the phase velocity, which causes a local stretching or squeezing of the predicted cross-spectrum, allowing 

it to better fit the observed cross-spectrum.  However, the stretching or squeezing has no effect in the 



neighborhood of an extremum, since the cross-spectrum is nearly-constant there.  The phase velocity at 

this point is actually being controlled by the quality of the fit to either side. 

Discussion and Conclusions 

We have described a new method for estimating frequency-dependent phase velocity of cross-

spectra of ambient noise by waveform fitting of Aki’s (1957) formula.  It is an alternative to Ekstrom et 

al.’s (2009) zero-crossing method, and is based upon a three-parameter grid search followed by 

generalized least-squares refinement.  In addition to estimating the frequency-dependent phase velocity 

function, the method provides estimates of its variance and resolution.  The variance can be used to 

compute confidence intervals for the phase velocity, which then can be propagated into three-dimensional 

models of shear velocity. 

When applied to high quality cross-spectra (s.n.r. > 10:1), the method is competitive with, but 

offers no decisive advantage over, Ekstrom et al.’s (2009) zero-crossing method.  However, it succeeds 

even when data quality is poor (s.n.r.   2:1) and many spurious zero-crossings occur. A method based on 

identifying the “true” zero-crossings would fail in this case.  One such success is illustrated in the low 

quality test case (figure 2C), where the observed cross-spectrum has 16 zero-crossings, 11 of which are 

spurious. Waveform fitting also provides more precise dispersion curve than the zero-crossing method 

when the station spacing is small (Figure 4). 

We recommend the method for general use in analyzing ambient noise cross-spectra.  It is robust 

to low noise levels, and so its use may prove especially attractive in cases where short array-deployment 

times limit the quality of cross-spectral estimates. 

Data Sources.  Seismic data used in the computation of the cross-spectrum will be available from the Data 

Management Center of the Incorporated Research Institutions of Seismology under the array code ZN, 

with a release date of September 2014. 
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Fig. 1. (A) High-quality data (s.n.r. of 10:1) ( black), with prediction of three-point grid search 

for solution with minimum L2 error (red) and least-squared refinement (blue). (B) Corresponding 

estimated phase velocity curves.  (C-D) Same as A-B, but for lower quality data (s.n.r. of 2:1).  

  



 

 

 

Fig. 2. Histograms of prediction error. (A)    error     of the three-point grid search (black) and 

four-point grid search (red) normalized by the power    in the cross-spectrum. (B) Error      of 

the generalized least squares refinement, normalized by the grid search error    , where the 

results of three-point grid search (black) and four-point grid search (red) were used as starting 

models. (C-D) Same as A and B, except   error is minimized in the grid search.  

  



 

Fig. 3. Histograms of estimated phase velocity,     , as a function of frequency,  . (A) Three-

point grid search with    measure of error. (B)  Least-squares refinement of three-point grid 

search. (C-D) Same as A-B, but for four-point grid search.  Red colors correspond to the highest 

density of phase velocity measurements.  

  



 

Fig. 4. Variance and resolution of estimated phase velocity curves. (A) Observed (black) and 

predicted cross-spectrum,      (red). (B) 95% confidence limits of estimated phase velocity, 

c(f). (C-F) Resolving kernels,         (black), for estimated phase velocity for selected target 

frequencies,    (red bars).  

 

 

 


