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Abstract.  The Generalized Least Squares (GLS) method uses both data and prior information to 

solve for a best-fitting set of model parameters. We review the method and present simplified 

derivations of its essential formulas.  Concepts of resolution and covariance – essential in all of 

inverse theory – are applicable to GLS, but their meaning, and especially that of resolution, must 

be carefully interpreted.  We introduce derivations that show that the quantity being resolved is 

the deviation of the solution from the prior model, and that the covariance of the model depends 

on both the uncertainty in the data and the uncertainty in the prior information.  On face value, 

the GLS formulas for resolution and covariance seem to require matrix inverses that may be 

difficult to calculate for the very large (but often sparse) linear systems encountered in practical 

inverse problems.  We demonstrate how to organize the computations in an efficient manner and 

present MATLAB code that implements them. Finally, we formulate the well-understood 

problem of interpolating data with minimum curvature splines as an inverse problem, and use it 

to illustrate the GLS method. 
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biconjugate gradient, splines 

 

1. Introduction 

 

The principle of least squares underpins many types of geophysical data analysis, including 

tomography, geophysical inversion and signal processing.  First stated more than two hundred 

years ago by Legendre  (1805), numerous subsequent developments have expanded the 

technique, delineated its relationship to other areas of mathematics (e.g. coordinate 

transformations (Householder 1958) ) and applied it to increasingly varied, complex and large 

problems. 

 

Relatively recent developments were the recognition that data can be supplemented with prior 

information – expectations about the nature of the solution that are not directly linked to 

observations – and the methodology for solving problems that combines prior information with 

data in a way that accounts for the uncertainty of each (Lawson and Hanson 1974; Wiggins 

1972; Tarantola and Valette 1982a,b; Menke, 1984). The resulting theory, here called 

Generalized Least Squares (GLS), is now central to much of the data processing that occurs in 

geophysics (and other fields, too). The first purpose of this paper is to review GLS and presents 
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simplified derivations of its essential formulas.  As is the case  in many fields other fields, the 

approach of some of the seminal papers has turned out to be unnecessarily complicated. 

 

Key ideas about the resolving power of data were developed independently of GLS, and 

especially through the study of continuous inverse problems (Backus and Gilbert 1968, 1970).  

These ideas have found fruitful application in GLS, but at the same time have been the source of 

considerable confusion.  The second purpose of this paper is to clarify the concept of resolution 

in problems containing prior information; that is, to rigorously define just what is being resolved. 

 

Modern inverse problems are extremely large; datasets containing millions of observations and 

models containing tens of thousands of parameters are not uncommon.  While GLS provides 

elegant formula for the resolution and covariance of an estimated model, those formulas seem, at 

first inspection, to be difficult to efficiently compute.  As a result, the percentage of data analysis 

papers (at least in geophysics) that apply GLS but which omit discussion of resolution and 

covariance is unnecessarily large. The third purpose of this paper is to provide practical 

algorithms for computing them, along with sample MATLAB code. 

 

No exposition of techniques is complete without an illustrative example. We formulate the well-

understood problem of interpolating data with minimum curvature splines as an inverse problem, 

and use it to illustrate the GLS method.  This problem is chosen both because it is intuitively 

appealing and because it has, in the continuum limit, an analytic solution against which GLS 

results can be compared. 

 

2. Review of Basis Inverse Theory Principles 

 

2.1. Definition of the Canonical Linear Inverse Problem. We consider a linear forward problem, 

     

(2.1.1) 

 

where a known     data kernel   links model parameters   to data    The generalized 

inverse     turns this equation around, linking data   to model parameters   through 

       

(2.1.2) 

 

The generalized inverse,    , is an     matrix that is a function of the data kernel.  However, 

at this point, neither the method by which it has been obtained nor its functional form has been 

specified. Many generalized inverses are possible, of which the GLS generalized inverse, 

discussed later in this paper, is but one. 
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2.2. Definition of Model Covariance.  Observational error are assumed to be Normally-

distributed with zero mean and with prior covariance   .  By “prior” we mean that the 

covariance is assigned independently of the results of the inversion, using, say, an understanding 

of the limitations of the measurement process.  In many instances, the errors will be statistically-

independent and with uniform variance   
 , in which case      

  .   These errors propagate 

through the inversion process, leading to estimated of model parameters with covariance   . 

This error propagation is described by the rule for linear functions of random variables (e.g. 

Rektorys 1969, Sec 33.6): 

             

(2.2.1) 

 

The variance of the model parameters is given by the diagonal elements of the covariance 

matrix: 

   
         

(2.2.2) 

 

and are typically used to state data confidence bounds for the model parameters, e.g. 

     
        

        

(2.2.3) 

 

Here the superscript “est” means “estimated”; that is, the model parameters determined by the 

inversion process. The confidence bounds can be quite misleading in the case where the 

estimated model parameters are highly correlated. 

An estimate of the model parameters,     , has a corresponding prediction error        

     , where the superscript “obs” means “observed”; that is, the data measured during the 

experiment.  The posterior variance of the data: 

   
     

 
           

(2.2.4) 

 

is sometimes used as a proxy for the prior variance   
 , at least in cases where the data are 

believed to be uncorrelated and with uniform variance.  Note, however, that this formula 

assumes that the estimated model is close to the true model, so that the error can be attributed 

solely to noise in the data – an assumption that is not always justified. 

 The ratio,       
    

 
 
   

 , is a measure of how well the data are fit by an estimated 

model.  Models for which       fit the data acceptably well and models for which      fit 
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them poorly. Models for which      “overfit” the data, which usually means that the model 

contains features whose presence is not justified by data with that noise level. 

2.3. Simple Least Squares. The simple least squares solution for data with covariance    is 

obtained by minimizing the prediction error: 

              
 
  

            

(2.3.1) 

 

with respect to model parameters  . This formula can be thought of as the “sum of squared 

prediction errors, with each error weighted by the certainty of the corresponding observation”.  

The minimization of      yields an estimate for the model parameters (e.g. Lawson and Hanson 

1974): 

          
          

       

(2.3.2) 

 

The generalized inverse is          
          

  .  Note that in the case of uncorrelated data 

with uniform variance,      
   , this formula reduces to              . One of the 

limitations of simple least squares is that this generalized inverse exists only when the 

observations are sufficient to uniquely specify a solution; else the matrix      
       does not 

exist.  As discussed below, one of the purposes of generalized least squares is to overcome this 

limitation. 

In simple least squares, the covariance of the model parameters is: 

                  
          

      
        

            
       

(2.3.3) 

 

In general, the model parameters will be correlated and of unequal variance even when the data 

are independent and with uniform variance: 

     
                           

   

(2.3.4) 

 

2.4. Definition of Model Resolution. The model resolution matrix         can be obtained 

by using the fact that an asserted (or “true”) model predicts data,             and that those 

data can then be inverted for estimated model parameters,              (Wiggins 1972). 

                        

(2.4.1) 
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The resolution matrix    indicates that the estimated model parameters only equal the true 

model parameters in the special case where     .  In typical cases, the estimated model 

parameters are linear combinations (“weighted averages”) of the true model parameters.  In 

general,    has no special symmetry; it is neither symmetric nor anti-symmetric.  We note for 

future reference that the simple least squares solution, when it exists, has perfect resolution 

             
          

      

(2.4.2) 

 

2.5. Meaning of the  -th Row of the Resolution Matrix. The  -th estimated model parameter 

satisfies: 

  
        

   
    

 

 

(2.4.3) 

 

and so can be interpreted as being equal to a linear combination of the true model parameters, 

where the coefficients are given by the elements of the  -th row of the resolution matrix.    

Colloquially, we might speak of the estimated model parameters as weighted averages of the true 

model parameters.  However, strictly speaking, they are only true weighted averages when the 

elements of the row sum to unity, 

    
 

 

      

(2.4.4) 

 

which is, in general, not the case. 

2.6. Meaning of the  -th Column of the Resolution Matrix. The  -th column of the resolution 

matrix specifies how each of the estimated model parameters is influenced by the  -th true 

model parameter. This can be seen by setting            with   
   

    ; that is, the all the 

true model parameters are zero except the  -th, which is unity.  Denoting the set of estimated 

model parameters associated with      as        , we have (Menke 2012): 

                             
      

     
    

 

    
  

(2.4.5) 

 

Thus the  -th column of the resolution matrix is analagous to the “point-spread function” 

encountered in image processing (e.g. Smith, 1997, Chapter 24); that is, a single true model 

parameter spreads out into many estimated model parameters. 
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If instead of being set to a spike,       is set some other pattern, then the resulting      provides 

information on how well that pattern can be recovered.  When the model represents the discrete 

version of a function        of two spatial variables        a common choice for the pattern is 

the “checkboard” (an alternating pattern of positive and negative fluctuations) and the procedure 

is called a “checkerboard test”. 

2.7. Spread Resolution and the Size of Covariance Trade Off. Spread of resolution for a can be 

quantified by the degree of departure of    from an identity matrix, and size of    by the 

magnitude of its main diagonal. A general principle of inverse theory is that resolution trades off 

with variance.  A solution with small spread of resolution tends to have large variance and vice 

versa. Many inverse methods (including GLS) have a tunable parameter that defines a “trade off 

curve” of allowable combinations of spread and size. Users can then select a combination of 

resolution and variance that is optimum for their particular use. 

3. Generalized Least Squares (GLS) 

3.1. Definition of Prior Information.  Generalized least squares (Lawson and Hanson 1974; 

Wiggins 1972; Tarantola and Valette 1982a,b; Menke 1984; see also Menke 2012) improves 

upon simple least squares by supplementing the observations with prior information, represented 

by the linear equation        
   

, where the superscript “pri” indicates prior. This equation, 

assumed to be determined independently from any actual observations, encodes prior 

expectations about the behavior of the model parameters. Many (but not all) classes of prior 

information can be represented by judiciously choosing the matrix    and vector    
   

:  For 

example: 

the model parameters have specific values,     

         and       
   

     

 

the average of the model parameters have a specific value,     

                 and        
   

     

 

the model parameters are flat 

   with rows like                    and        
   

   

 

the model parameters are smooth 

   with rows like                   and       
   

   

(3.1.1) 

 

and so forth.  The accuracy of the prior information is described by a covariance matrix     that 

represents the quality of the underlying expectations. In many cases, the prior information will be 

uncorrelated, implying that     is a diagonal matrix (but see Abers et al. (1994) for an interesting 
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counterexample). In many cases, all the prior information will also be equally uncertain, in 

which case       
  , where   

  is the variance of the prior information. 

The case of a non-uniform prior variance has wide uses, because it can be used to assert 

that one part of the model obeys prior information, like        , more strongly than others.  

This allows a kind of hypothesis testing that is called “squeezing” (Lerner-lam and Jordan,1987).  

The presence of a certain feature in the model is tested by designing prior information that 

asserts that the feature is absent and assigning that feature – and that feature only – low variance.  

The feature will be suppressed (squeezed) in a solution that includes this prior information, 

relative to one that does not.  The prediction error of the two solutions can be compared, 

allowing an assessment of whether or not the data really support the presence of the feature; that 

is, they supports its presence only when the squeezed solution has a significantly larger 

prediction error. 

 In general, the prior information need be neither consistent nor sufficient to uniquely 

determine the model parameters.  However, it is always possible to add additional – but very 

weak – information to uniquely determine a set or prior model parameters, say    that can be 

used for reference; that is, allowing us to answer the question of how much the data changed our 

preconceptions about the model). We take the approach of augmenting       
   

 to 

 

       
  

 
      

   

 
  

(3.1.2) 

 

This modification adds the information that the model parameters are close to zero. When 

assigned high variance, it will force to zero linear combinations of model parameters that are not 

resolved by       
   

 while having negligible effect on the others. We define the 

corresponding covariance to be 

    
    

     
  

(3.1.3) 

 

Here     is the variance of the additional information, which is presumed very large (implying 

that   is very small).    We can then define the reference model    to be the simple least squares 

solution to the augmented system: 

        
          

          
    

         
  

  
    

       

(3.1.4) 

 

We will call    the prior model, for it is the one predicted by the prior information, acting 

alone. We can define the data predicted by the prior information as: 



3/7/2014 12:42 PM  8 
 

       

(3.1.5) 

3.2. The Generalized Least Squares Solution. The generalized least squares is solution is 

obtained by minimizing the generalized error; that is, the sum of the simple least squares 

prediction error      and the error in prior information,          
         (Tarantola and 

Valette 1982a,b): 

              
 
  

                      
 
  

            

(3.2.1) 

By defining 

   
  

    
 

  
    

 
                  

  
    

    

  
    

    
  

(3.2.2) 

we can write               
 
  

           , with     , which is in the form of a 

simple least squares minimization problem. (Note that the covariance of      is, indeed,     ; 

the data and prior information has been weighted so as to produce uncorrelated random variables 

with unit variance).   Here      denotes the observed values of the data and      the prior values 

of the information (that is, the values that are asserted).  The combined vector      includes both 

observations and prior information, but we simplify its superscript to “obs”. 

The solution is given by the simple least squares formula: 

                   

(3.2.3) 

or 

                       

                 
                       

                   
        

    

(3.2.4) 

 

The presumption in generalized least squares is that the addition of prior information to the 

problem is sufficient to eliminate any non-uniqueness that would have been present had only 

observations been used.  Thus, the inverse of   is presumed to exist.  Note that since   is 

symmetric, its inverse     will also be symmetric. 

3.3. Variance of Generalized Least Squares. The standard formula for error propagation gives: 

         
                                   

(3.3.1) 
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Note that this covariance depends on both the prior covariance of the data,   , and the variance 

of the prior information,   .  We can identify the contribution of the two sources of error as: 

         
           

    

(3.3.2) 

since 

         
           

           
      

               
      

       

 

        
               

               
         

                    

(3.3.3) 

Thus, the covariance of the model parameters consists of the sum of a term,          , which is 

identical in form (but not in value) to the one encountered in simple least squares, and an 

analogous term arising from the prior information.  In the limit of        (very noisy data), 

   depends only upon   , and in the limit of        (very weak information),    depends 

only upon   . 

Since the predicted data are linear functions of the estimated model parameters through the 

equation,           , their covariance is given by: 

                   

(3.3.4) 

 

3.4.  Resolution of Generalized Least Squares. Generalized least squares does not distinguish the 

weighted data equation   
    

          from the weighted prior information equation 

  
             ; the latter is simply appended to the bottom of the former to create the 

combined equation          Consequently, in analogy to the simple least squares case, we 

can define a generalized inverse     and a resolution matrix    as: 

                                                                     

                                                

(3.4.1) 

 

However, when defined in this way, the resolution of generalized least squares is perfect, since 

                          

(3.4.2) 

 

In general, the estimated model parameters depend upon both      and     ; that is 

                     . Consider, however, the special case of        . (This case 
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commonly arises in practice, e.g. for the prior information of smoothness). The estimated model 

parameters depend only upon     ; that is              
  .  We can use the forward 

equation to predict data associated with true model parameters,            , and then invert 

these predictions back to estimated model parameters,                . Hence, we obtain the 

usual formula for resolution: 

       
                           

(3.4.3) 

 

Superficially, we seemed to have achieved contradictory results, as the two resolution 

matrices have radically different properties:  

                      

(3.4.4) 

 

However, one step in the derivations is critically different.  During the derivation of   , we 

asserted that       , even though an arbitrary       predicts              .  During the 

derivation of   , we made no such assertion; the      imbedded in      arises from             

and is not equal to zero.   

That the    and not    is the proper definition of resolution can be understood from the 

following scenario: Suppose that the model   represents a discrete version of a continuous 

function      and that one in trying to find an      that approximately satisfies         but 

is smooth.  Smoothness is the opposite of roughness, and the roughness of a function can be 

quantified by the mean-squared value of its second derivative.  Thus, we take    to be the 

second derivative operator (i.e. with rows like             ) and 

      , which leads to the minimization of            , a quantity proportional to the r.m.s. 

average of the second derivative. Now suppose that the true solution is the spike            

(that is, zero except for the  -th element, which is unity).  We want to know how this spike 

spreads out during the inversion process, presuming that an experiment produced the data  

           that this model predicts. What values should one use for   in such an inversion?  

The model predicts         
    , but these are the actual values of the second derivative.  To 

use them in the inversion would be to assert that second derivatives are known - much stronger 

information than merely the assertion that their mean-squared average is small.  One should, 

therefore, use       , which leads to a solution that is a column of   , not   . 

So far, our discussion has been limited to the special case of       .  We now relax that 

condition, but still require that the prior information is complete (as above), so that it implies a 

specific model,         
          

      . We now use the prior model    as a reference 

model, defining the deviation of a given model from it as        . The generalized least 

squares solution can be rewritten in terms of this deviation: 
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(3.4.5) 

 

Thus, the deviation of the model from    depends only on the deviation of the data from those 

predicted by   : 

                                                

(3.4.6) 

and furthermore 

                                           
 

        

(3.4.7) 

 

Once again, we can combine               with                into the usual statement 

about resolution, 

                                    

(3.4.8) 

 

In this case, too,    is the correct choice for quantifying resolution. However, the quantity being 

resolved is the deviation of the model from the reference model,   , and not the model itself.  

The distinction, while of minor significance in cases where    has a simple shape, is more 

important when     is complicated. 

3.5. Linearized GLS.  In many cases, the relationship between data and model is nonlinear: 

         

(3.5.1) 

 

A common approach is to use Taylor’s theorem to linearize this equation about a trial solution 

    : 
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with 

                                                         
  

     

   
 
    

 

(3.5.2) 

 

Here    is the perturbation of the model parameters from the trial solution     , and    is the 

perturbation of the data from those predicted by the trial solution. This approach leads to a 

standard linear equation of the form          .  We now need to combine this equation with 

prior information.  We first write the prior information equation,      in terms of 

perturbations: 

                                                        

(3.5.3) 

 

The generalized least squares equation then becomes: 

                       

      
  

    
    

  
    

 
              

  
    

     

  
    

     
  

                                                        

(3.5.4) 

 

Note that the quantity       represents the perturbation of the prior information from that 

predicted by the trial model. An initial solution      can be iterated to produce a sequence of 

solutions,                                  , which under favorable circumstances 

will converge to the solution,     , that minimizes the generalized error     . 

After any iteration, the covariance of       can calculated as               
  

.  Since 

                  and      is a constant, it is also the covariance of       .  Its value after 

the final iteration can be used as an estimate of the covariance of     .  However, this estimate 

must be used cautiously because it is based on a linear approximation. 

The issue of resolution is treated exactly parallel to its handling in the linear problem. The 

linearized equation has exactly the same form as the original linear version, except that   is 

replaced with      ,      is replaced with       and      is replaced with      .  Therefore, we 
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can arrive at the proper formula for resolution by making these substitutions in the results of the 

original linear derivation. In analogy to the linear case, we define quantities: 

            
    

  
    

  
  

   
                     

    
     

       

(3.5.5) 

 

The first equation represents the perturbation of the prior model from the trial model. The second 

equation represents the data perturbation predicted by that model perturbation. In further analogy 

to the linear case, we define the deviations: 

                                                  
 

(3.5.6) 

 

As before,        is predicted from       
 via a generalized inverse: 

             
  

               

      
  

         
           

    
  

       
   

(3.5.7) 

 

We can then define a resolution matrix 

            
  

                               
   

               
    

 

(3.5.8) 

This resolution matrix is exactly analogous to the linear case; one merely substitutes the 

linearized data kernel      for the usual, linear data kernel,  .  Superficially, the the quantity 

being resolved looks complicated – the deviation between two perturbations.  However, closer 

examination reveals: 

                                              

(3.5.9) 

This is the same quantity as in the linear case; that is, the deviation of the model from the prior 

model. 

3.6. Symmetric Resolution in the Special Case of Convolutions.  Let us consider the special case 

where   represents the discrete version of a continuous function      and where   and   

represent convolutions (Bracewell 1986; Claerbout 1976; see also Menke and Menke 2011). 

That is,    is the discrete version of          , where   is the convolution operator. 

Furthermore, let us assume that the data and prior information are uncorrelated and with uniform 

variances,      
   and      

  .  Convolutions commute; that is                    .  
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Consequently, the corresponding matrices will commute as well (except possibly for “edge 

effects”); that is      .  Furthermore, the transform of a convolution matrix is itself a 

convolution – namely, the original convolution backward in time; that is,         .  These 

properties imply that the resolution matrix: 

               
    

(3.6.1) 

 

is symmetric, since 

                        
        

                              

      
        

          
        

               

  
           

                                

(3.6.2) 

4. Computational Efficiencies 

4.1. Calculating the Generalized Least Squares Solution. In practice, the matrix inverse     

        is not needed when computing an estimate of the model parameters from data; instead, 

once solves the linear system: 

                  

(4.1.1) 

 

Furthermore, when the biconjugate gradient solver (Press et al. 2007) is used, the matrix   

      
  

      
  

   need never to be explicitly calculated, since it is only used by the solver 

to multiply a known vector, say   (Menke 2005).  This product can be written as: 

            
             

        

(4.1.2) 

 

that is, each intermediate result is a vector, not a matrix. This technique can lead to substantial 

efficiencies in speed and memory requirements, especially when the matrices are very large but 

sparse. The exemplary MATLAB code, below, calculates the solution mest, assuming that    

and   are diagonal matrices with main diagonals vard and varh. 

global G H vard varh 

% define N, M, dobs, vard, hpri, varh, G, H, varh here 

TOL=1e-5; 

MAXI=4*N; 

mest = bicg( @glsfcn, G'*(dobs./vard)+ H'*(hpri./varh), TOL, MAXI); 

(4.1.3) 
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Here @glsfcn is a handle to a function glsfcn that implements the multiplication shown in 

(4.1.2).  Note that this function accesss the matrices G and H and the vectors vard and varh 

through their having been declared global variables in the main program. 
 

function y = glsfcn(v,transp_flag) 

global G H vard varh 

y = G'*((G*v)./vard) + H'*((H*v)./varh); 

return 

(4.1.4) 
 

4.2. Linearized GLS. Exemplary MATLAB code for the key part of the linearized inverse 

problem is shown below: 

global G H vard varh 

% define N, M, dobs, vard, hpri, varh, G, H, varh here 

m_p = m_0; 

for itt=[1:10] 

    d_p = g(m_p); 

    dd = dobs - d_p; 

    dh = hpri - H*m_p; 

    G = dgdm(m_p); % matrix of derivatives dg/dm  

    TOL=1e-5; 

    MAXI=4*N; 

    dm = bicg(@glsfcn,G'*(dd./vard)+H'*(dh./varh),TOL,MAXI); 

    m_p = m_p+dm; 

    if( ((dm'*dm)/(m_p'*m_p)) <= TOL ) 

        break; 

    end 

end 

mest = m_p; 

  (4.2.1) 
 

Here g(m_p)and dgdm(m_p)are two user-supplied functions that return         and        , 

respectively. The maximum number of iterations is set here to 10, and the loop terminates early 

if the fractional change in the solution, from one iteration to the next, drops below       .  

These limits may need to be modified (by trial and error) to reflect the convergence properties of 

the actual problem being solved. 

4.3. Calculating the  -th Row (or Column) of    . Note that the equation: 

                        
  

 

     

(4.3.1) 

 

can be read as a sequence of vector equations: 

                             
 
       

  
               

 
      

(4.3.2) 



3/7/2014 12:42 PM  16 
 

 

That is,      is the  -th column of     and      is the corresponding column of the identity matrix.  

Hence we can solve for the  -th column of     by solving the system            .  As in the 

previous section, the biconjugate gradient solver can be used to solve this system very 

efficiently. Finally, note that since     is symmetric, its  -th row is      .  The exemplary 

MATLAB code, below, calculates the solution mest, assuming (as before) that    and   are 

are diagonal matrices with main diagonals vard and varh. 

global G H vard varh 

% define N, M, dobs, vard, hpri, varh, G, H, varh, k here 

s = zeros(M,1); 

s(k)=1; 

TOL=1e-5; 

MAXI=4*N; 

ai = bicg( @glsfcn, s, TOL, MAXI); 

(4.3.3) 
 

4.4. Calculating the  -th Row or Column of   . In some instances, it is sufficient to compute a 

few representative elements of   , as contrasted to the complete matrix.  The results of the last 

section can be used directly, since       . Exemplary MATLAB code for calculating the 95% 

confidence intervals of model parameter    of the data are shown below: 

% Note: k must match value used in calculation of ai 

sigmamest = sqrt(ai(k)); 

% 95% confidence interval 

mlow = mest(k)-2*sigmamest; 

mhigh = mest(k)+2*sigmamest; 

(4.4.1) 

 

4.5. Calculating the  -th Row of the Generalized Inverse. Notice that: 

            
                            

       
     

 

 

(4.5.1) 

 

Hence, the  -th row of the generalized inverse     it’s the  -th row of     dotted into      
   . 

We can construct the  -th row of the generalized inverse after using the method of the previous 

section to calculate the  -th row of    . In many cases    is a diagonal matrix, which 

substantially simplifies the process of computing      
   : 

     
   

  
        

      

 

      

   

(4.5.2) 

 

Exemplary MATLAB code is shown below: 
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% Note: k matches the value used in the calculation of ai 

gi = ((ai')*(G'))./(vard');  

(4.5.3) 

 

4.6. Calculating the  -th Row of the Resolution Matrix. In some instances, it is sufficient to 

compute a few representative rows of   , as contrasted to the complete matrix. The resolution 

matrix is formed from the generalized inverse and data kernel through: 

 

                    
      

  
   

 

 

(4.6.1) 

 

Thus, the  -th row of the resolution matrix is the  -th row of the generalized inverse dotted into 

the data kernel.  We can construct the  -th row of the resolution matrix after using the method of 

the previous section to calculate the  -th row of the generalized inverse. 

 

Exemplary MATLAB code is shown below: 
 

% Note: k matches the value used in the calculation of gi 

r_row = gi*G;  

(4.6.2) 

4.7. Calculating the  -th Column of the Resolution Matrix. The Let us define the  -th column of 

the resolution matrix as the vector     ; that is: 

 

  
   

    
  

(4.7.1) 

Then notice that the definition         can be written as 

                      
   

    
      

  

 

        

 

     
  

 

  
   

  

         
   

        

 

        
   

 

 

(4.7.2) 

 

As before,      is the  -th column of the identity matrix. The quantity            is the data 

predicted by a set of model parameters               that are all zero, except for the  -th, which 

is unity.  Thus, the two step process: 

                               
     

(4.7.3) 
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forms the  -th column of the resolution matrix.  In practice, the linear system           
       

is solved (e.g. with a biconjugate gradients solver) instead of the equation containing the 

generalized inverse. Exemplary MATLAB code is shown below: 

% unit spike at k 

s = zeros(M,1); 

s(k)=1; 

% corresponding spiked data 

ds = G*s; 

% solve for column r_col of resolution matrix 

TOL=1e-5; 

MAXI=4*N; 

r_col = bicg( @glsfcn, G'*(ds./vard), TOL, MAXI); 

(4.7.4) 
 

5. Minimum Curvature Splines as an Illustrative Example 

5.1. Statement of the Problem. Let model parameters   and data   represent discrete version of 

continuous functions      and     , say with spacing   . We would like to find model 

parameters that are approximately equal to the data (that is          ), but which are smoother 

(that is, have smaller second derivative).   This is, of course, a data interpolation problem, and in 

that context its solution would be called a minimum curvature spline (Briggs, 1974; Smith and 

Wessel, 1990). 

 

Since the data are direct estimates of the model parameters, we set    . Smoothing is achieved 

by setting      and    to the second derivative operator, with rows like: 

 

                   

(5.1.1) 

 

Thus,       for a smooth function. The data   are uncorrelated with unit variance   
    and 

the prior information      is uncorrelated with uniform variance,   
 . The degree of smoothing 

increases with      
    

 ; that is, as the variance of the prior information of smoothness is 

decreased. 

 

5.2. GLS Solution. Since      , the solution has the form             . The generalized 

inverse     is: 

 

         
                

      
     

         

or 

                       
           

         
     

(5.2.1) 
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The model    implied by the prior information alone can be deduced directly, because it 

corresponds to the smallest model with zero second derivative.  The condition of a zero second 

derivative implies that    is linear, and the condition that    is small selects the linear function 

    .   Hence, we do not need to distinguishing between   and    and will continue to use 

 .  Having resolved this issue, we can set      without affecting subsequent results. The 

variance of the model parameters is: 

 

          
     

(5.2.2) 

 

and the resolution matrix is: 

 

            

(5.2.3) 

 

Note that      (perfect resolution) when     .  Furthermore,    is symmetric, since   is 

symmetric.  

 

5.3. Numerical Example.  We used MATLAB to solve the exemplary smoothing problem, using 

synthetic data consisting of a sinusoidal function      with additive Normally-distributed noise 

(Figures 1 and 2).  The example shown here is for        , which executes in on a 

notebook computer in 0.45 seconds.  Test runs for          (not shown) were also 

successful and executed in a few minutes. 

 

The MATLAB code for this example is provided as supplementary material. 

 

5.4. Analytic Analysis for Weak Smoothing. In most practical cases, a purely numerical solution 

to a GLS problem would be sufficient.  However, many inverse problems (such as this one) have 

a sufficiently simple structure that analytic analysis adds important insights.  Furthermore, it 

provides a reference against which the numerical results can be compares. 

 

We first consider the case where the smoothness constraint is weak       . We can 

expand the matrix     in a Taylor Series (e.g. Menke and Abbott 1989, Exercise 2.1), keeping 

only the first two terms: 

 

             
            

    
          

    

(5.4.1) 

 

A row of     looks like: 

 

                                                     

(5.4.2) 
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In the absence of the smoothness information  (    ),    =I, implying that estimated model 

parameters are uncorrelated and with uniform variance   
  and that the resolution is perfect.  As 

the strength of smoothness information is increased, the magnitude of the central value decreases 

and the nearest neighbor values become positive. For example, when             , a row of 

    looks like: 

 

                               

 

(5.4.3) 

 

The smoothing has caused the variance of each model parameter (the central value) to decrease 

from   
  to       

 . However, the smoothing has also created covariance between model 

parameters, which decreases with separation.  The smoothing has also caused the spread of the 

resolution to increase.  However, although the row-sum is unity, the outermost non-zero values 

are negative, indicating that the smoothing cannot be interpreted as a weighted average in the 

normal sense. 

 

5.5. Resolution in the Continuum Limit. Suppose, as before, the vector      represents the  -th 

column of the identity matrix (say a column   corresponding to position   ). The equation 

             can be understood both as the  -th column of the generalized inverse and as the 

data predicted by a model that is a single spike at position   .  We have: 

 

                            
          

(5.5.1) 

 

Moving the matrix inverse to the l.h.s. of the equation yields: 

 

    
    

              

(5.5.2) 

 

The second derivative operator is symmetric, so that   
        ; that is, a second derivative 

operator applied twice to yield the fourth derivative operator. Except for the first and last row, 

where edge effects are important, the matrix equation is the discrete analogue to the differential 

equation: 

 

  
      

   
                    

(5.5.3) 
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The factor of    has been added so that the area under            is the same as the area under 

    . This well-known differential equation has solution (Hetenyi 1979; see also Menke and 

Abbott 1989; Smith and Wessel 1990): 

 

                                                       

(5.5.4) 

 

with 

  
    

   
                

(5.5.5) 

 

This differential equation is arises in a civil engineering context, where it is used to describe the 

deflection         of a elastic beam of flexural rigidity    floating on a fluid foundation, due to a 

point load at    (Hetenyi 1979).  The beam will take on a shape that exactly mimics the load only 

in the case when it has no rigidity; that is,     . For any finite rigidity, the beam will take on a 

shape that is a smoothed version of the load, where the amount of smoothing increases with   .  

In our example, the model is analogous to the deflection of the beam and the data to the load; 

that is, the data is smoothed to produce the model. The parameter           gives the scale 

length over which the smoothing occurs.  The function         is analogous to the  -th row of the 

generalized inverse, so its       element is just the function evaluated at the  -position 

corresponding to the  -th position, or: 

 

   
  

                                                            

 

Since, in this example,      
     and       , we have found expressions for the covariance 

and resolution, as well. The variance of an estimated model parameter is   
    

   

  
           .  Note that the variance of a model parameter declines as the smoothing is 

increased, but the number of highly-correlated neighboring model parameters increases, being 

proportional to                . Owing to the trigonometric functions,    has negative (but 

small) side-lobes.  Note that the resolution matrix    is symmetric – a result guaranteed by the 

fact that both   and    correspond to convolutions.  The spread of the resolution is proportional 

to          , a measure of width of the main diagonal of   .   

 

The size of covariance    
            and the spread of resolution         define a trade off curve 

in the tunable parameter  .  When    is small, the spread is small (good) but the variance is large 

(bad).  When    is large, the spread is large (bad) but the variance is small (good).  While size of 

covariance and spread of resolution cannot be controlled independently, the parameter    can be 

chosen to fix the best combination that is optimum for a given purpose. 

 

6. Conclusions 
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Generalized Least Squares has proven to be an extremely powerful tool for solving inverse 

problems; that is, for gaining knowledge about the world.  The concepts of resolution and 

variance, so useful for understanding the behavior of inverse problems in general, are applicable 

to GLS, but with some caveats.  Resolution is computed via the usual formula, however the 

quantity that is being resolved is not the model itself (as it is in simpler inverse problems), but its 

deviation from the prior model; that is, the model implied by the prior information.  This is true 

irrespective of whether the problem is exactly linear or approximately linearized. The formula 

for covariance contains a term not present in the simple least squares case, which is proportional 

to the uncertainty of the prior information. Thus, the covariance of the model depends on both 

the covariance of the data and the covariance of the prior information. Although both formulas 

superficially require large matrices to be inverted, the calculations can be organized to allow 

individual rows and columns of both to be computed without the need for matrix inversion.  In 

practice, a few representative rows are usually all that is needed, for it is impractical to 

completely analyze very large matrices, anyway. 
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Fig. 1.  (Top) Numerical test of the exemplary smoothing problem discussed in the text, for 

      . The observed data (black circles) and estimated model parameters (red curve), with 

selected 95% confidence intervals (blue bars) are shown. (Bottom) Similar example, but for 

       . Note that the smaller   implies that less weight is given to the prior information of 

smoothness, leading to a rougher curve. The confidence intervals are also wider, a manifestation 

of the trade off of resolution and variance. 
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Fig. 2.  (Top) Resolution of the exemplary smoothing problem discussed in the text. (A) Selected 

rows of the resolution matrix    for the case       . Rows (black) are calculated individually, 

according to the method described in the text.  In this example, the resolution matrix is 

symmetric, so transposed columns, computed individually using the method described in the 

text, are also plotted (green).  Results from the continuum limit, where the inverse problem is 

converted into a differential equation, are also shown (red). As expected, all curves agree. 

(Bottom) Similar example, but for        . Results for the smaller   have the narrower spread. 

 


