A. \(\mathbf{u} \) are a stationary, random process with
\[\langle \mathbf{u} \rangle = 0, \quad \text{and covariance} \]
\[C_{ij} = \int \mathbf{u}_i \mathbf{u}_j P(\mathbf{u}) \, d\mathbf{u} \]

B. Interpolate with formula
\[u_{i+1} = \lambda_{ij} u_j \]

C. Find \(\lambda_{ij} \) by minimizing \(\langle [u_{i+1} - u_i]^2 \rangle \) at every \(i \)
\[\frac{\partial}{\partial \lambda_{ij}} \int \left[\sum_j \lambda_{ij} u_j - u_i \right]^2 P(\mathbf{u}) \, d\mathbf{u} = 0 \]
\[\int \left[\sum_j \lambda_{ij} u_j \right] \left[\sum_k \lambda_{ik} u_k - u_i \right] P(\mathbf{u}) \, d\mathbf{u} = 0 \]
\[\int \left(\sum_k \lambda_{ik} u_k - u_i \right) \lambda_{ij} u_i P(\mathbf{u}) \, d\mathbf{u} = 0 \]
\[\sum_k C(q - k) \lambda_{ik} = C(q - i) \]
which can be solved for \(\lambda_{ik} \) if \(C(i,j) \) is known.

D. Note that the Wiener–Khinchin relation relates \(C(\Delta x) \) to \(P(kx) \); where \(P = \) power spectrum.
\[C(\Delta x) = \mathcal{F}^{-1} P(kx) \]
\[\mathcal{F} = \text{inverse Fourier transform} \]