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Reconstructing Temperature History From temperature-dependent Degradation Data
Bill Menke, April 2, 2012

Suppose chemical species k degrades (reacts) at a rate r[k, T(t)], which is a function of temperature 7(2),
where tis time. The rate of change of concentration C* of the chemical species is assumed to obey:
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The concentration at time ¢; constitute the data d®:
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We now ask what can be learned about the temperature 7(%) given measurements of d® at fixed ¢; but for
several (say /) K’s. Evidentially, we cannot determine 7Y(?), since the integral in (2) is not sensitive to the
time sequence of 7. Thus, for instance, if 7(%) were piecewise constant, the integral is not sensitive to the
order of the pieces. However, (2) is sensitive to the amount of time spent near each temperature, as can
be seen by transforming the integral from ¢ to 7. Suppose, for the moment, that 7(%) is a monotonically
increasing function of & Then
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Here d¢(T) represents the increment of time spent near temperature 7. If 7(%) is not monotonically
increasing, then we must break the faxis into several segments, each in which 7(?) monotonically
increases or decreases. Equation (3) then becomes
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where the sum is over the segments. We now understand dt*°*!(T") to mean the total amount of time
spent at temperature 7. The absolute value sign in (4) is added to indicate that all time increments d#(7)
are considered positive, regardless of whether 7{(%) is increasing or decreasing in the segment. We now
consider the discrete approximation of (4), where we divide the 7-axis into M intervals between 7, and
Tmax.
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Here At() is the total amount of time spent at temperature 7} Equation (5) is a standard linear inverse
problem of the form

d=Gm with dk = d(k) and ij = T[k, Tl] and m; = At
(6)

and can be solved using generalized least squares. The behavior of the solution will depend upon the
structure of the matrix G, for example, on whether its columns are linearly independent.

Case 1: The rate function ris a linear function of temperature (with no additive constant).

Gry = [k, Tj] = by T,
)

This problem is completely non-unique, since every column is linearly dependent on every other. Thus
for columns pand ¢
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Case 2: The rate function ris a linear function of temperature (with non-zero additive constant).
Gk] = T[k,T]] =a + ka/
®)

This problem is unique, as long as the a;’s are distinct. On the other hand, if four columns (p, g, r; s) all
have the same a’s, then the problem is substantially non-unique, since linearly -dependent combinations
can be formed from pairs of columns.

G G b b
kp _ kg kT ) - /3
C- ) _(+m)- (1edm)

(Tp = Tq) 3 (Tp - Tq)
G G b b
(G- %) _(14%1)- (14%1)

G-T) (T —T) a




(10)

Since (9) can be considered a Taylor series approximation of a general rate function, we conclude that,
except in special cases such as the one considered in (10), the general problem is unique.

Case 3: The rate function ris a exponential function of temperature:

Gy = [k, Tj] = ay exp (byT))

(11)
Note that for temperatures near 75, the linear approximation is
Gy = ay exp (beTy) = ay exp (beTo) + ay by exp (byTo)(T; — To)
= ag(1—by) exp (beTo) + ay by exp (beTp) Ty = a'y + b'yT;
with a’y = a,(1— by) exp (bTo) and b’y = ay by exp (biTp)
(11
The a’are distinct, so the solution is unique. We examine a numerical example below, with N=M=11

and a’s and b’s as shown in Figure 1. The data are shown in Figure 2. They correspond to the
temperature history shown in Figure 3. The reconstruction (green circles in Figure 3) is excellent (though
some tuning of the least-squared damping coefficient was needed to achieve this quality of solution).
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Figure 1. arand b; used in the numerical example.
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Figure 2. True data (red) based on the axand b shown in Figure 1 and the temperature history shown in
Figure 3. The predicted data (green), based on the estimated solution in Figure 3, closely matches the true
data.
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Figure 3. True (red) and estimated (reconstructed) (green) temperature history.
Matlab Script

M=11;

DT = 0.5;

T = 0.1+DT*[0:M-1]";
Tmin = min(T):;

Tmax = max(T):;

dt_true = 0.1l+sin( pi*T/Tmax );
dt_max = max(dt_true);




figure(l);

clf;

set (gca, 'LineWidth',3);

hold on;

axis( [Tmin, Tmax, 0, 2*dt_max] );

plot( T, dt_true, 'ro', 'LineWidth', 3);

plot( T, dt_true, 'r-', 'LineWidth',6 2);

xlabel ('temperature T');

ylabel ('time interval Dt at a given temperature');

co = 1;

N = 11;

Da = 0.2;

a = Da*[0:N-1]"+1;
Db = 0.2;

b = Db*[0:N-1]'+1;

G=zeros (N,M) ;
for i=[1:N]
for j=[1:M]
G(i,j) = a(i)*exp(b(i)*T(j));
end
end
d_true = G*dt_true;
d_max = max(d_true);

figure (2);

clf;

set (gca, 'LineWidth', 3);

hold on;

axis( [b(1), b(N), 0, d max] );

plot( b, d_true, 'r-', 'LineWidth',6 2);
xlabel ('rate exponent b');

ylabel('data d = -1n(C/C0)"');

s2=0.1;
d_obs = d_true + random('Normal',0,s2,N,1);
plot( b, d_obs, 'ro', 'LineWidth', 2);




e2=1.0e-1;
dt_est = (G'*G + e2*eye(M))\(G'*d_obs);
figure(1l);
plot( T, dt_est, 'go', 'LineWidth', 3);

d_pre = G*dt_est;
figure (2);
plot( b, d_obs, 'go', 'LineWidth', 2);

figure (3);

clE;

subplot(2,1,1);

set (gca, 'LineWidth', 3);

hold on;

axis( [1, N, 0, a(N)] );

plot( [1:N]', a, 'r-', 'LineWidth', 2);
plot( [1:N]', a, 'ro', 'LineWidth',6 2);
xlabel ('index k');

ylabel('a_k");

subplot(2,1,2);

set (gca, 'LineWidth', 3);

hold on;

axis( [1, N, 0, b(N)] );

plot( [1:N]', b, 'r-', 'LineWidth', 2);
plot( [1:N]', b, 'ro', 'LineWidth',6 2);
xlabel ('index k')

ylabel('b_k');




