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Issue at hand:  

We observe that earthquake P-axes tend to have more-or-less consistent directions, and tend to 

be parallel what we expect the direction of maximum compression to be.  Yet the P-axes are a 

kinematic property of the fault (that is; they are partly controlled by the orientation of the fault) 

and a wide range of fault orientations may slip for any given state of stress.   How much 

deviation of P-axes from direction of maximum compression do we predict? 

 

Assumptions: 

Slip direction on fault is parallel to the shear traction on the fault plane 

Fault slips when Mohr-Columb Failure Criteria met for a coefficient of friction       

 

Method 

 (x,y,z) = (E, N, Up) coordinate system 

 Fault parameterized in term of azimuth (E of N) and plunge (down from horizontal) of normal   

 Symmetric stress tensor   with compression stress positive  

 Direction of maximum compressive stress is eigenvector of   with largest eigenvalue 

 traction,       

 normal traction,            of magnitude      and direction             

 shear traction,           of magnitude      and direction             

 failure criterion                

P-axis direction, in plane of fault normal and slip, halfway between:                   

     as in the figure below: 

  

 
Figure: The P-axis is in the plane of outward-pointing normal   and the shear   , halfway between these 

two directions. 

  



 

Results for 

    
            
      
      

  

(maximum compressive stress is about east-west) 

 

Figure.  Blue bar gives direction of maximum compressive stress.  Black dots show various combinations 

of azimuth (abcissa) and plunge (ordinate) of fault normals.  Red bar has a direction that indicates the 

projection of the P-axis onto the (x,y) plane and a length that scales with the magnitude of the Mohr-

Columb Failure Criterion,  , but are shown only for faults predicted to slip (that is, with    ). 

Note that center of diagram (plunge=0, azimuth=90) is a vertical fault striking N/S.  This has only a large 

normal fault acting on it, and so it not predicted to slip. Faults with moderate dip slip.  Those left/right of 

the center are vertical strike-slip faults with strikes oblique to north.  They slip in a horizontal direction 

that is oblique to east-west. Those above/below the center are north-striking dip-slip faults that slip in 

the east-west direction.  Faults at the top and bottom of the diagram are sub-horizontal faults that don’t 

slip because the overall traction on their surface is small. 
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Figure.  Histogram of the cosine of the deviation of the projection onto the (x,y) plane of the P-axes and 

the direction of maximum compressive stress.  Only for faults predicted to slip (that is, with    ) are 

used. 

Interpretation:  While there a certainly some faults that have large deviations of P-axes from the 

direction of maximum compression.  But the histogram is strongly peaked at a cosine of deviation of 

unity, which is to say a deviation of zero.  I suspect that the assumption that the slip is parallel to the 

direction of shear stress on the fault places a strong constraint on the orientation of the P-axis. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

cosine of deviation

c
o
u
n
ts



MatLab Code 

clear all; 
DTOR = pi/180; 

  
% stress tensor, but work in system where compressive stress is positive 
S= [1, 0.001, 0.002; 0.001, 0, 0; 0.002, 0, 0]; 

  
% principle stress directions 
[V,D] = eig(S); 
tmp = [V(1,3), V(2,3)]'; 
Ph = tmp / sqrt(tmp'*tmp); % maximum compressive stress direction 
tmp = [V(1,1), V(2,1)]'; 
Th = tmp / sqrt(tmp'*tmp);  % minimum compressive stress direction 

  
sigma = 0.6; % coefficient of friction 

  
azi = [0:5:180]'; % degrees E of N 
plunge = [-90:5:90]'; % degrees from horizontal 

  
k=0; 
for ia = azi' 
for ip = plunge' 
    k=k+1; 
    a(k) = ia; 
    p(k) = ip; 
end 
end 
N=k; 

  
figure(1); 
clf; 
set(gca,'LineWidth',2); 
hold on; 
axis( [min(azi), max(azi), min(plunge), max(plunge) ] ); 
plot( a, p, 'k.', 'LineWidth', 2 ); 
scale = 10; 
plot( [-scale*Ph(1)+90,scale*Ph(1)+90]', [-scale*Ph(2),scale*Ph(2)]', 'b-', 

'LineWidth', 4 ); 
% plot( [-scale*Th(1)+90,scale*Th(1)+90]', [-scale*Th(2),scale*Th(2)]', 'g-', 

'LineWidth', 4 ); 
xlabel( 'azi' ); 
ylabel( 'plunge' ); 

  
% x is east, y is north, z is up 
% normal to fault plane 
nx = cos(DTOR*p).*sin(DTOR*a); 
ny = cos(DTOR*p).*cos(DTOR*a); 
nz = -sin(DTOR*p); 

  
NC=0; 
for i = [1:N] 
    n = [nx(i), ny(i), nz(i)]'; % normal to fault 
    T = S*n; % traction on fault 
    Tn = (T'*n)*n; % normal traction 



    mTn = sqrt(Tn'*Tn); % magnitude of normal traction 
    dTn = Tn/mTn; % direction of normal traction 
    Ts = T - Tn; % shear traction 
    mTs = sqrt(Ts'*Ts); % magnitude of shear traction 
    dTs = Ts / mTs; % direction of shear traction 
    tmp = n+dTs; 
    paxis = tmp/sqrt(tmp'*tmp); 
    C = mTs - sigma*mTn; 
    [mTs, mTn, C] 

     
    if( C>0 ) 
        NC=NC+1; 
        scale = 30.0*C; 
        plot( [a(i), a(i)+scale*paxis(1)], [p(i), p(i)+scale*paxis(2)], 'r-', 

'LineWidth', 2 ); 
        tmp = sqrt( paxis(1)^2 + paxis(2)^2 ); 
        costheta(NC) = (paxis(1)*Ph(1)+paxis(2)*Ph(2))/tmp; 
    end 

  

end 

     

     
    bins = [-100:5:100]/100; 
    h = hist( costheta, bins ); 
    figure(2); 
    clf; 
    set(gca,'LineWidth',2); 
    axis( [0, 1, 0, max(h) ] ); 
    hold on; 
    plot( bins, h, 'k-', 'LineWidth', 2); 
    xlabel('cosine of deviation'); 
    ylabel('counts'); 

     

     

 

 


