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 6 

Abstract. The wave field imaging techniques that have so revolutionized seismic tomography are 7 

predicated on our ability to efficiently compute the derivative of error with respect to a model 8 

parameter describing Earth structure.  The error quantifies the quality of fit between the observed 9 

and predicted data, which can be either the wave field itself (“waveform inversion”) or some 10 

quantity derived from it (e.g. finite frequency travel times).  Computation of the derivatives is an 11 

essential part of the inversion process and usually the most computationally-intensive part of it. 12 

Adjoint Methods use a mathematical manipulation drawn from the theory of linear operators to 13 

reorganize the calculation, substantially improving its efficiency. We review Adjoint Methods 14 

and present simplified derivations of its essential formulas. The concept of the adjoint field is 15 

developed, using two complementary techniques: a direct method based on substitution and an 16 

implicit one based on Lagrange multipliers.  We then show how the introduction of the adjoint 17 

field changes the scaling of the derivative calculation, from one proportional to the number of 18 

model parameters (which can be very large) to one proportional to the number of receivers 19 

(which is typically more modest in size). We derive derivative formula for four types of data: the 20 

wave field itself, finite frequency travel times, wave field power, and the cross-convolution 21 

measure.  In each case, we first develop the general formula and then apply it to the special case 22 

of a weakly-heterogeneous medium with a constant background structure. 23 



 24 

1. Introduction 25 

 26 

Wave field inversion is the process of inferring Earth structure and/or source parameters from 27 

measurements of the seismic wave field.  Structural parameters include material properties such 28 

as density, compressional velocity and shear velocity and the positions of interfaces.  Source 29 

parameters include the time histories and spatial patterns of forces and the seismic moment 30 

density associated with faulting. The measurements (data) might be the displacement of the wave 31 

field, or any of several quantities derived from it, such as finite-frequency travel times 32 

Marquering et al. [1999] and cross-convolution measures [Menke and Levin, 2003]. 33 

 34 

Wave field inversion has been developed by many researchers over the last fifty years and has 35 

many different implementations.  Most variants employ the principle that the best estimate of the 36 

parameters is the one that matches the data to its theoretical prediction. Wave field inversion 37 

becomes a nonlinear optimization problem when the misfit between theory and observation is 38 

quantified by a formally-defined error (such as the least squares error) and a wide range of well-39 

understood techniques are available to solve it.  Among these are iterative methods, which start 40 

with an initial estimate of the model, which only poorly fits the data, and successively perturb it 41 

to achieve a better fit.  Two types of iterative methods are in common use: Newton’s method 42 

[e.g. Deuflhard, 2004] and the Gradient-Descent method [e.g. Snyman, 2005]. The former 43 

method requires the derivative     of the predicted data    with respect to a model parameter   , 44 

and the latter requires the derivative    of the error with respect to a model parameter: 45 

 46 



    
   

   
             

  

   
 

(1.1 a,b) 47 

 48 

Most of the work of wave field inversion (and the cleverness needed to avoid that work) is 49 

expended during the computation of these derivatives.  These derivatives are often referred to as 50 

sensitivity kernels, because they quantify how sensitive the predicted data and error are to small 51 

changes in the model. 52 

 53 

Like most inversion methods, wave field inversion is predicated on the ability to solve the 54 

forward problem; that is, to simulate (predict) the seismic wave field in an arbitrary 55 

heterogeneous medium and with a realistic source.  Wave field simulation only became practical 56 

when the efficiency of computation increased to the point where a complete calculation could be 57 

completed in a few hours.  Wave field inversion requires many such simulations; the trick is to 58 

reduce the number to a manageable level. 59 

 60 

A simplistic analysis based on the finite difference approximation indicates that the time needed 61 

to compute a full set of partial derivatives might scale with the number of model parameters   in 62 

the Earth model. For example,     simulations are need to compute all   elements of   : 63 

 64 

   
  

   
 

              

  
                      

(1.2) 65 

 66 



Wave field inversion currently would be impractical if this was the most efficient possible 67 

scaling, because the thousands of parameters needed for realistic Earth models would then imply 68 

the need for computing an equal number of wave field simulations (whereas, computing even a 69 

few is computationally challenging). Wave field inversion would be limited to a few simplistic 70 

cases where the simulation can be computed analytically (such as in homogeneous media 71 

[Devaney, 1981]) or where Earth models can be described by just a few parameters (such as 72 

layered models [Mellman 1980]). 73 

 74 

Adjoint Methods significantly improved the efficiency of the calculation of derivatives, because 75 

they allow the computation to be reorganized so as to scale with the number  of receivers, as 76 

contrasted to the number   of model parameters.  In a typical seismic imaging problem,    . 77 

Adjoint Methods came to seismology via atmospheric science, where they are used to facilitate 78 

data assimilation - the tuning of the forcing of global circulation models to better match 79 

observations [Hall et. al., 1982;  Hall and Cacuci, 1983; Talagrand
 
and Courtier, 1987].  Early 80 

work on seismic wave field sensitivity kernels by Marquering et al. [1998], Marquering et al. 81 

[1999], Dahlen et al. [2000] and Hung et al [2000] did not explicitly utilize Adjoint Methods 82 

(though some of their mathematical manipulations are arguably similar to them). Adjoint 83 

techniques were first introduced into wave field inversion by Tromp et al. [2005], who cite 84 

Talagrand
 
and Courtier’s [1987] paper as an inspiration.  Subsequent work by Zhao et al. [2005], 85 

Van der Hilst and De Hoop [2005], Long et al. [2008], Taillandier et al. [2009], Chen et al. 86 

[2010], Xu et al. [2012] have developed and extended Adjoint Method.  Early applications wave 87 

field imaging applied to seismology include  Montelli et al.’s [2006] study of mantle plumes, 88 

Chen et al.’s [2007] study of the crust beneath southern California, Chauhan et al.’s [2009] study 89 



of the Sumatra subduction zones, and Zhu et al. [2012] study of the European continental 90 

mantle,. 91 

We provide a review here of the underlying principles of the Adjoint Method. 92 

Section 2 is devoted to a review of the key concepts of functional analysis and seismic inversion, 93 

using mathematical notation that balances compactness with familiarity.  Our review of 94 

functional analysis includes linear operators and their adjoints and the attributes that make them 95 

useful to wave field inversion. The most important relationships are derived and intuitive 96 

justifications are provided for most of the rest.  Adjoints of selected linear operators are derived 97 

in Appendix A.1. A simple example is used to illustrate the potential of Adjoint Methods to 98 

improve the efficiency of seismic inversion problems. Our review of inversion includes a 99 

discussion of model parameterizations, distinguishes Fréchet derivatives from ordinary partial 100 

derivatives, and identifies the cases where their respective use is appropriate.  Finally, the role of 101 

the Born in calculating perturbations to the wave field is introduced and two complementary 102 

derivations are provided. 103 

Section 3 reviews the application of the Adjoint Method of waveform inversion, that is, special 104 

case where the data are the displacement time series, itself, as contrasted to some quantity 105 

derived from it (such as a finite-frequency travel time). The least squares error is defined and 106 

formulas for the partial derivative of waveform and error with respect to a model parameter and 107 

their corresponding Fréchet derivative are derived. The concept of an adjoint field is developed. 108 

A direct method is used in the derivations, but the use of an implicit method based on Lagrange 109 

multipliers is explored in Appendix A.2. Section 4 applies the results of Section 3 to the simple 110 

case of a scalar wave field in a weakly heterogeneous medium with a homogeneous background 111 



slowness.  The spatial patterns of the partial derivatives are illustrated and its relationship to the 112 

seismic migration method is developed. 113 

  114 

Section 5 reviews the application of Adjoint Method to finite frequency travel times.  Finite 115 

frequency travel time is defined and a perturbation technique is used to derive its partial 116 

derivative with respect to a model parameter.  An Adjoint Method is then used to derive 117 

formulas for the partial derivative of error with respect to a model parameter. Section 6 the 118 

results of Section 5 areplued to the scalar wave field case. The spatial patterns of the partial 119 

derivative of error are illustrated and their interpretation as a banana-doughnut kernel is 120 

developed. 121 

 122 

Section 7 applies the Adjoint Method to the cross-convolution measure, an error-like quantity 123 

that is used in receiver function and shear wave splitting imaging, because it is relatively 124 

insensitive to the poorly-known source time function of the teleseismic wave field.  Formulas for 125 

the partial derivates are developed.  Section 8 applies the results of Section 6 to the simple case 126 

of an elastic wave field in a weakly heterogeneous medium with homogeneous background 127 

slowness.  The spatial patterns of the partial derivatives are illustrated and their connection to the 128 

issue of model resolution is developed. 129 

 130 

2. Review of Concepts 131 

 132 

2.1. Linear Operators. The word adjoint comes from the mathematical theory of linear operators 133 

[e.g.. Reed and Simon, 1981].  Linear operators, denoted by  ’s, include multiplication by 134 



functions, derivatives, integrals and other operations that obey the rule              135 

            (where the     are constants and the  ’s are functions).   136 

 137 

Linear operators act on functions of position and time and are themselves functions of position 138 

and time. Often, we will need to refer to several sets of position and time (e.g. of an observation, 139 

of a source) and so adopt the practice of distinguishing them with subscripts; that is,         and 140 

       . Furthermore, we simplify expressions by abbreviating the functional dependence with a 141 

subscript; that is,            ,                    , etc. 142 

 143 

The exemplary expression          can be interpreted as generating a function    from a 144 

function    through the action of a linear operator   .  It is analogous to the linear algebraic 145 

equation     , where   and   are time series (vectors) of length   and where   is a     146 

matrix.  The equation          can be thought of as the limiting case of      when     147 

and the time series become functions.  Linear operators are important in seismology because the 148 

wave equation and its solution in terms of Green functions involve linear operators. This 149 

mathematical structure is exemplified by the scalar wave equation for an isotropic homogeneous 150 

material (which has one material parameter, the constant slowness  ): 151 

 152 

          
  

   
    

         

(2.1a) 153 

     
                   

    

     



(2.1b) 154 

            
            

     
                                           

(2.1c) 155 

Here,      is the Green function for a observer at          and an impulsive point source at 156 

        and the Dirac impulse function is denote by     .  The Green function integral is the 157 

inverse operator   
   of     (in the sense that    generates     from   , whereas   

   generates 158 

   from   . 159 

 160 

A linear operator may need to include one or more boundary conditions in order to be fully 161 

defined and to possess an inverse.  For instance, the simple first derivative equation     162 

             needs to be supplemented by the initial condition            in order for 163 

its inverse to be the integral       
            

  

 
.   164 

 165 

The generalization to the three-component particle displacement field              
 
 that is 166 

commonly used in seismology is algebraically complicated but straightforward.  The equations 167 

of motion combine Newton’s law,                    (where   is density and   is stress) 168 

with Hooks’ Law               (where       is the elastic tensor) to yield the second-order 169 

matrix differential equation        .  In the isotropic case with Lamé parameters λ and  , the 170 

operator    is    : 171 

 172 
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(2.2) 175 

 176 

Here, we have written the operator   as the sum of a term      that does not contain derivatives 177 

of the material parameters and a term      that does.  We have also suppressed the subscript   on 178 

the derivatives to improve readability of the matrices. 179 

 180 

Some authors use two coupled first-order equations, in particle velocity and strain, rather than 181 

the single second-order equation, above.  The combined matrix equation is larger but 182 

algebraically simpler and more amenable to numerical integration. 183 

 184 

2.2. The Inner Product. Central to the theory of linear operators is the concept of the inner 185 

product, which computes a number   from an arbitrary pair of functions    and   : 186 

 187 



              

    

              

(2.3) 188 

 189 

The angle brackets provide a compact way of writing the inner product. The subscript   in        190 

indicates that the integration is over        . The location of the comma is significant only when 191 

its arguments are more complicated than simple functions.  For instance,            implies that 192 

the linear operator    is applied to    but not   .  The inner product of functions    and    is 193 

analogous to the dot product              of vectors   and  . Furthermore, just as  194 

       is the squared length of the vector   and                is the squared 195 

distance between vectors   and  , so             can be thought of as the squared length of 196 

the function    and                   can be thought of the distance between the two 197 

functions    and   . Thus, like the dot product, the inner product is very useful in quantifying 198 

sizes and distances. An important inner product in seismology is the waveform error    199 

   
         

        , which defines the total error (misfit) between and observed and 200 

predicted wave fields. 201 

 202 

In the case of a vector field, the inner product is the integral of the dot product of the fields: 203 

 204 

                 

    

            

 205 

(2.4) 206 

 207 



2.3. The Adjoint of a Linear Operator. One or both of the arguments of an inner product can 208 

involve a linear operator    - for example,           .  This situation is analogous to a dot 209 

product containing a matrix   - for example         . In the latter case, the transposition 210 

operator can be used to “move” the matrix from one part of the dot product to the other, in the 211 

sense that                   .  The adjoint operator, which is denoted with the dagger 212 

symbol  , moves the linear operator from one side of the inner product to the other in a 213 

completely analogous way:                  
     .  Just as    is a different matrix from  , 214 

but constructed from it in a known way (that is, by swapping rows and columns), so the operator 215 

  
 
 is different from the operator    but constructed from it in a known way (though in a way 216 

more complicated than for a matrix).  Thus, far from being mysterious, the adjoint is just a 217 

    limiting case of a matrix transpose.  Adjoints obey almost all of the same algebraic rules 218 

as do transposes, including: 219 

 220 

  
                     

  
  

    
                  

   
  

   
 

 

    
   

 
 

   
   

 
 

 

(2.5) 221 

 222 

Just as a matrix that obeys      or       is respectively called symmetric or anti-223 

symmetric, so an operator that obeys   
     or   

      is respectively called self-adjoint or 224 

anti-self-adjoint. A few simple cases are (see Appendix A.1): 225 

 226 

       2.6a 

         self-adjoint 2.6b 



                    anti-self-adjoint 2.6c 

                        self-adjoint 2.6d 

 
      

      
  

  

  
   

   
    

 

   
    

 
 

 

 
  

  
  2.6e 

              2.6f 

   of elastic wave equation self-adjoint 2.6g 

                
       2.6g 

 227 

Here   signifies convolution and   signifies cross-correlation. Taking the adjoint of a first 228 

derivative reverse the sense of direction of the independent variable, since               229 

and                 This effect is more important for the time than for space, because the 230 

time boundary condition is usually asymmetric (the past is quiescent but the future is not), while 231 

the space boundary condition is usually symmetric (the field approaches zero as     ). 232 

Consequently, manipulations of equations using adjoints often lead to behaviors that are 233 

“backward in time” (see Appendix A.1). 234 

 235 

2.4. Applications of Adjuncts. Two factors combine to make Adjoint Methods especially useful 236 

in seismology. First, observations often involve a wave field    that obeys a differential equation 237 

        (where    is a source term), so a linear operator    is associated with the problem. 238 

Second, the formulas that link the field   to observations and to observational error involve inner 239 

products. 240 

 241 



To see why this combination of factors might be useful, consider the case where a set of   242 

observations   
    are related to the field   by the inner product [see Menke, Section 11.11,  243 

2012]; that is, the predicted data is: 244 

 245 

             

(2.7) 246 

 247 

Here,               are known functions and    is the wave field.  Now suppose that we want 248 

to “tune” the source so that the observations are matched (meaning we inverting for the source 249 

  ). A perturbation     in the source causes a perturbation     in the field which, in turn, causes 250 

a perturbation     in the data. Because of the linearity of the system: 251 

 252 

                                   

(2.8) 253 

 254 

Writing the solution of the differential equation as            and inserting it into the inner 255 

product yields: 256 

          
                                            

(2.9) 257 

 258 

This equation reads: to determine the perturbation     in the data, solve the wave equation with a 259 

source perturbation      to determine the field perturbation     and then take the inner product 260 

of     with the function    .  The differential equation must be solved for every source 261 



perturbation     that is considered (let’s suppose that there are   of them), but once these 262 

solutions are determined, they can be applied to any number of data. Now, suppose that we 263 

manipulate the inner product: 264 

 265 

                                                       

(2.10) 266 

 267 

Here we have introduced the adjoint field               as an abbreviation for        . This 268 

equation reads: to determine the perturbation     in the data, solve the adjoint differential 269 

equation with source term     to determine the adjoint field     and then take the inner product 270 

of     with the source perturbation    .  The adjoint differential equation needs be solved   271 

times (once for each datum), but once these solutions are determined, they can be applied to any 272 

number of source perturbations. 273 

 274 

As an aside, we mention that the adjoint field plays the role of a data kernel     linking 275 

perturbations in data to perturbations in unknowns, that is                with        . 276 

 277 

In many practical problems,    , so the adjoint formulation is preferred.  The advantage is 278 

one of efficiency, only; both approaches lead to same solution. However, the value of efficiency 279 

must not be underrated, for many problems in seismology become tractable only because of 280 

Adjoint methods. 281 

 282 



In seismology, this procedure can be used to determine the earthquake source, as quantified by 283 

its moment tensor density, from observed seismic waves [Kim et al., 2011].  The function     in 284 

Equation (2.7) is then the Dirac delta function                 ; that is, the predicted data 285 

   is the field    observed at time    by a receiver at   . 286 

 287 

2.5. The Fréchet derivative. The equation                is very similar in structure to the 288 

first order perturbation rule for a set of analogous vector quantities    and   : 289 

 290 

          
 
    

   

   
 

                 
   

   
     

(2.11) 291 

 292 

The only differences are that the vector    has been replaced by the function     and the 293 

summation has been replaced by integrals.  Consequently, the rule                can be 294 

thought of defining a kind of derivative: 295 

 296 

                 
   

   
         

    

       
   

  
                 

   

   
     

(2.12) 297 

  298 

This so-called Fréchet derivative         is distinguished from a partial derivative by the use of 299 

    in place of    . Partial derivative Fréchet derivatives find many uses, especially because they 300 

obey the chain rule: 301 

 302 



   

   
   

   

   
 
   

   
   

(2.13) 303 

 304 

Here    is an arbitrary function of space and time. The manipulation of expressions into a form 305 

that identifies a Fréchet derivative (as in the case above) is another important application of 306 

Adjoint methods.  307 

 308 

2.6. Model Parameterization. In the case discussed above, the source perturbation     is treated 309 

as the unknown. Far more common in seismology is the case where the material parameters that 310 

appear in   , such as elastic constants and density, are the unknowns.  An important question is 311 

whether these parameters should be described by a spatially (and possibly temporally) varying 312 

function, say          , (as was done previously for the source) or by a set of discrete 313 

parameters          that multiply a set of prescribed spatial-temporal patterns. (say 314 

  
   

          ): 315 

 316 

             

 

   

                               

 

   

  
   

   

(2.14) 317 

 318 

The issue is where in the solution process the transition should be made from a continuous view 319 

of the world, which is realistic but unknowable, to a discrete view, which is approximate but 320 

computable. The first approach starts with the derivation of Fréchet derivatives and converts 321 

them to partial derivatives only at last resort.  The second approach uses only partial derivatives 322 



throughout.  We review both approaches here, because both are used in the literature. 323 

 324 

2.7. The Born Approximation. The differential equation             is not, in general, linear 325 

in a material parameter  , so only an approximate equation can be derived that links a 326 

perturbation is the material parameter to a perturbation in the field.  This is in contrast to the case 327 

of the unknown source, in which the equation            is exact. Here we examine the case 328 

for a single discrete parameter    (for which we subsequently drop the subscript).  The result 329 

can be generalized to multiple discrete parameters    merely by adding a substituting    for  . 330 

The generalization to the continuous case is somewhat more complicated and will be derived 331 

later. We compare two different approaches to deriving this equation, which, as we will discover, 332 

yield the same result. 333 

 334 

The first approach starts with the equation      
      and differentiates it with respect to   335 

around a point    336 

 337 

    

  
 
  

   
   

      

  
 
  

   

  
  

    
  

    

    
         

  
 
  

   
             

         

  
 
  

  
     

(2.15) 338 

 339 

Note that    is not a function of  , so that         , that   
     

        is the solution to 340 

the unperturbed equation            
    ,   is the data kernel (the partial derivative of the field 341 

with respect to a model parameter), and the derivation uses the derivative rule (Appendix A.2):  342 



 343 

 

  
  

      
  

   

  
  

   

(2.16) 344 

 345 

The second approach starts with the wave equation            , represents the field    346 

  
      as the sum of an unperturbed part   

  and a perturbation     and expands the operator 347 

     around the point   , discarding terms higher than first-order: 348 

 349 

                 

  
 
  

   

(2.17) 350 

 351 

Inserting these representations into the wave equation and keeping only first order terms (the 352 

Born approximation) yields: 353 

 354 

               

  
 
  

      
                

      

  
 
  

  
               

(2.18) 355 

 356 

Subtracting out the unperturbed equation and rearranging yields: 357 

 358 

         
         

  
 
  

  
      

   

  
          

(2.19) 359 



 360 

We can now identify the data kernel            as the factor in the parentheses and see that 361 

is it’s the same formula that was derived by the first approach. That these two approaches lead to 362 

the same formula is unsurprising, since both are based on first-order approximations of the same 363 

equations. 364 

 365 

2,8. An Exemplary Partial Derivative of an Operator. The partial derivative        may at first 366 

seem mysterious, but an example demonstrates that it is completely straightforward. Consider the 367 

special case of a scalar wave equation with slowness           , where the unperturbed 368 

slowness     and the perturbation     are both spatially-variable functions.  We parameterize 369 

        , where    is prescribed “pattern” function and   is a scalar amplitude parameter.  370 

The linear operator in the wave equation is then: 371 

                
  

   
    

      
           

  

   
    

  

(2.20) 372 

Taking the partial derivative with respect to   and evaluating it at        yields: 373 

    

  
 
 

       

  

   
  

(2.21) 374 

 375 

2.9. Relationship between a partial derivative and a Fréchet derivative.  Suppose that the model 376 

is parameterized as           where    is a prescribed spatially and temporally varying 377 



pattern and    is a scalar. Inserting this form of    into the Fréchet derivative      378 

               yields: 379 

 380 

     
   

   
          

   

  
               

   

  
  

   

  
      

(2.22) 381 

 382 

Evidentially, the partial derivative can be formed by taking the inner product of the Fréchet 383 

derivative with the prescribed pattern.  Alternately, suppose that the pattern  is temporally- and 384 

spatially localized at  ; that is                          where   is a scalar model 385 

parameter Furthermore, suppose that this model function leads to the partial derivative is 386 

           The effect of many such perturbations, each with its own position   , time   , and 387 

amplitude    , is the superposition (integral) of the individual ones: 388 

 389 

            
     

  
                  

   

   
  

     

   
 

(2.23) 390 

 391 

Evidentially, the Fréchet derivative is just the partial derivative for a temporally- and spatially 392 

localized pattern. 393 

3. Waveform Tomography 394 

 395 

3.1. Definition of Error. The goal in waveform tomography is to match the predicted field    to 396 

the observed field   
   , by minimizing the total error           , where      

      .  397 



This optimization problem can be solved using the Gradient-Descent method, which minimizse 398 

  by iteratively perturbs an initial estimate of  . It requires the either the partial derivative 399 

      or the Fréchet derivative      , depending upon whether the model is respectively 400 

represented by discrete parameters or continuous functions. 401 

3.2. Partial Derivative of Error. As before, the predicted field    is assumed to arise through the 402 

solution of a differential equation             containing a discrete parameter  . A 403 

perturbation    in parameter   causes a perturbation    in the total error   : 404 

      

  
 
  

             
  

  
     

   
   

  
 
  

       
   

   

  
 
  

       
       

(3.1) 405 

We simplify the notation used in subsequent equations by dropping explicit dependence on   . 406 

Inserting the formula for    yields:  407 

  

  
               

    
   

   

  
  

      
   

 

  
  

     
    

          
    

          
   

 

  
                 

     
              

        
    

(3.2) 408 

As before, we have introduced an adjoint field   . The derivative       is constructed as 409 

follows: First, the adjoint field    is determined by solving the adjoint wave equation, which 410 

involves the adjoint operator   
 
 and has a source term equal to the prediction error   

 .  Second, 411 

the operator     
     is applied to the adjoint field to yield the function   .  Finally, the inner 412 



product of the unperturbed field   
  with the function   is computed. This process is often 413 

referred to as correlating    and   
  

, since it corresponds to their zero-lag cross-correlation. 414 

In many practical cases, we will want to consider the error    associated with one receiver point 415 

 : 416 

                                     

(3.3) 417 

We now assert that the total error    is the superposition of the individual errors   , its partial 418 

derivative is the superposition of individual partial derivatives, and the adjoint field     is the 419 

superposition of individual     ’s: 420 

                    
   

  
  

   

  
                           

(3.4) 421 

Inserting this definition of      into the differential equation for    yields: 422 

  
        

      

  
                                          

      
                                 

(3.5) 423 



The presumption that this equation holds irrespective of the volume over which the error is 424 

defined implies that the integrand is zero, so: 425 

  
                         

(3.6) 426 

Thus, each      corresponds to a point source at    with the time function of the error at that 427 

point.  Similarly, if we define           
          , then a procedure analogous to the one 428 

above can be used to show that: 429 

   

  
         

    

(3.7) 430 

A typical seismological application might involve       model parameters but only       431 

observations points. The adjoint formulation allows all     partial derivatives (one for each 432 

model parameter) to be calculated by solving “only”     differential equations, one to 433 

calculate the unperturbed field    and the rest to calculate the adjoint fields, of which there is 434 

one for each of the   observation points. 435 

Physically, the adjoint field can be thought of as the scattered field, back-propagated to 436 

heterogeneities from which it might have originated.  Mathematically, the adjoint field can be 437 

interpreted as a Lagrange multiplier associated with the constraint that the field obeys a wave 438 

equation at every point in space and time (see Appendix A.3).   439 



3.3. Fréchet Derivative of Error. We now present a completely parallel derivation of the Fréchet 440 

derivative of the waveform error with respect to a model function   . The scalar field    441 

satisfies partial differential equation: 442 

 443 

             

(3.8) 444 

We will write both    and    in terms of background level and a perturbation: 445 

     
                     

      

(3.9) 446 

Functions   
 ,    ,   

  and     all vary with both space and time. However, in most practical 447 

cases     and     will be constant in time. The background field   
  satisfies the unperturbed 448 

equation: 449 

 450 

     
     

     

(3.10) 451 

The Fréchet derivative for the total error             with      
       and     

    
    452 

  
 , is derived by considering how a perturbation in the field changes the error: 453 

                
    

       
        

           
    

    

    
    

        
                      

    
    



                           
        

(3.11) 454 

Note that we have discarder terms of second order in small quantities. Substituting in     455 

     yields: 456 

         
        

(3.12) 457 

The next step is to replace     in the above expression with an expression involving    . We 458 

start with the Fréchet derivative of the field, which is defined by: 459 

 460 

      
  

  
 
   

                          

(3.13) 461 

Here the inner product with Fréchet derivative                is understood to be a linear 462 

operator   . Our derivation requires the Fréchet derivative of the operator      . It satisfies: 463 

     
   

   
       

(3.14) 464 

As shown previously, this is just the partial derivative of the operator for a heterogeneity 465 

temporally- and spatially-localized at  . For example, in the case of the scalar wave equation: 466 



           
   

  

   
    

      
                   

  

   
  

   

   
 

   

   
    

                 
  

   
  

(3.15) 467 

The Fréchet derivative of the field is then derived by applying the Born approximation to the 468 

differential equation: 469 

             

      
                

          

      
    

   

   
           

          

     
     

       
        

   

   
        

      

(3.16) 470 

Subtracting out the unperturbed equation and rearranging yields: 471 

         
  

   

   
  

                           

        
  

   

   
  

  

(3.17) 472 



The Fréchet derivative of the total error with respect to the model is obtained by substituting 473 

           into the general expression for this derivative: 474 

         
                

   
        

(3.18) 475 

The Fréchet derivative of the total error is then: 476 

   

   
     

   
     

      
   

         
      

    

(3.19) 477 

Substituting in the formula for     
 

 yields: 478 

  

   
   

   
 

   
  

     
    

            
    

             
     

              
        

                     
   

  
 
   

    

(3.20) 479 

The quantify    
      has the       independent variables reversed with respect to        .   480 

However, since the Dirac function is symmetric in      , the only effect is to change the 481 

independent variables in the rest of the operator from   to  . 482 

In many practical cases, we will want to consider the error    associated with a receiver point  : 483 

       
       

 
    



(3.21) 484 

The total error is then the superposition of the individual errors, its Fréchet derivative is the 485 

superposition of individual derivatives, and    is a superposition of individual     ’s 486 

                    
   

   
  

   

   
                           

(3.22) 487 

Inserting this definition of      into the differential equation for    yields: 488 

  
                 

     
                                       

    
                                 

(3.23) 489 

The presumption that this equation holds irrespective of the volume over which the error is 490 

defined implied that the integrand is zero, so: 491 

  
                        

(3.24) 492 

Thus, each      corresponds to a point source at    with the time function of the error at that 493 

point.  Similarly, if we define                         , then a procedure analogous to the 494 

one above can be used to show that: 495 



   

   
    

               

(3.25) 496 

These formula are very similar to the partial derivate case derived previously. 497 

4.  An Example Using the Scalar Wave Equation 498 

4.1. The Partial Derivative of the Field With Respect to a Model Parameter. In the first part of 499 

this derivation, we pursue the strategy of explicitly calculating      , where   is a receiver 500 

point and   is a scalar parameter, using the Born approximation.  When then differentiate it to 501 

find the derivative            , and use this derivative to infer            .  The advantage 502 

of this approach is that it allows terms in the formula for        to be interpreted in terms of 503 

scattering interactions. 504 

The scalar wave equation for an isotropic medium with constant slowness    and a source that is 505 

spatially-localized at    and has time function      is: 506 

  
    

      
                 

(4.1) 507 

It has solution: 508 

  
  

        

     
                                          

 (4.2) 509 



Here     is the distance between    and    and     is the corresponding travel time. The initial 510 

condition that    has a quiescent past selects the forward-in-time solution              and the 511 

condition that it has a quiescent future selects the backwards-in-time solution             . 512 

Suppose that the slowness of the medium has the form           where    is a constant 513 

background level and     is small perturbation representing spatially variable heterogeneities. 514 

The quantity   
 , which appears in the wave equation, is approximately: 515 

  
    

    
   

  
 

 

   
     

   

  
    

         

(4.5) 516 

The corresponding scalar field is      
     , where   

  solves the constant-slowness wave 517 

equation and where    arises because the slowness field is slightly heterogeneous.  Inserting this 518 

representation into the wave equation, keeping terms only to first order, and subtracting out the 519 

homogenous equation yields the Born approximation: 520 

   
              

     
     

    
                       

  
    

        
       

     
     

     
   

     
                    

  
    

      
            

      

(4.6) 521 

The field perturbation     solves a constant-slowness wave equation with a complicated source 522 

term. Now suppose that we consider appoint-like heterogeneity of strength   localized at 523 

position   : 524 



               

(4.7) 525 

Substituting this expression into the Born approximation yields: 526 

  
                    

           

(4.8) 527 

This is a constant-slowness wave equation and has solution: 528 

          
              

     
 

(4.9) 529 

Differentiating   with respect to    yeilds: 530 

   

  
 

 

  
         

              

     
 

(4.10) 531 

4.2. The Partial Derivative of Error With Respect to a Model Parameter. Now suppose we have 532 

an observation   
    for some fixed observer location  .  The error   is defined as: 533 

        
                    

    
      

  

(4.11) 534 

The derivative is: 535 



   

  
       

 
   

  
    

(4.12) 536 

Inserting Equation (4.10) yields: 537 

   

  
       

 

     
    

                         

       
 

     
 

 

     
   

                         

       
 

     
 

 

     
    

                        

(4.13) 538 

The last form is derived by noting that the integral is an inner product and that the time 539 

derivative, which is self-adjoint, can be moved from   to         . The source time function   540 

is propagated outward from the source, scattered off the heterogeneity, and then propagated to 541 

the observer (Figure 1A) , where it is “correlated” (time-integrated) with the second derivative    542 

of the error. 543 

We now apply the transformation of variables            to the integral in Equation (4.13).  544 

Then: 545 

   

  
       

 

     
 

 

     
                                 

(4.14) 546 



In this version, the source time function is propagated forward in time from the source to the 547 

heterogeneity and the error is propagated backward in time from the observation point to the 548 

heterogeneity (Figure 1B), and the two are then correlated.  We have achieved a form that is very 549 

reminiscent of formula derived using the Adjoint Method, without explicitly applying adjoint 550 

methodology. Or rather, we have applied adjoint methodology without recognizing that we have 551 

done so; compare with the derivation of the Green function adjoint in Equation (A.5). 552 

4.3. Computation of            Using the Adjoint Method.  The wave equation operator is 553 

self-adjoint, so the Adjoint field equation (see Equation 2.6) and its solution are: 554 

  
           

 
  

   
    

                           

     
          

     
 

(4.15) 555 

Here we have selected the quiescent future form of solution (           in Equation 4.2).  The 556 

derivative of the wave equation operator is also self-adjoint and is: 557 

   

  
 

   
 

  
             

  

   
  

(4.16) 558 

so 559 

      
   

 

  
                    

           

     
  



(4.17) 560 

The unperturbed field satisfies: 561 

    
     

 
  

   
    

                              
  

         

     
 

(4.18) 562 

Here we have selected the quiescent past form of solution (           in Equation 4.2). 563 

Inserting this expression into Equation (2.7) yields an expression for the derivative: 564 

   

  
         

                  
           

     
 
         

     

   

     
 

     

 

     
                           

(4.19) 565 

This is the same formula that was derived in Equation (4.14) using the Born approximation.  The 566 

spatial pattern of the derivative is axially-symmetric about a line drawn through source and 567 

receiver and has the form of a series of concentric ellipses of alternating sign, with foci at the 568 

source and receiver (Figure 2).  The ellipses represent surfaces of equal travel time from source 569 

to heterogeneity to receiver.  The amplitude of the derivative varies across the surface of an 570 

ellipse, because it depends upon the product of the source-to-heterogeneity and heterogeneity-to-571 

receiver distances, rather than their sum. 572 

Zhu et al. [2009] point out an interesting link between the Adjoint Method and seismic migration 573 

[Claerbout and Doherty 1972], an imaging method commonly applied in reflection seismology.  574 



In this setting, the unperturbed field, due to a source on the Earth’s surface, is down-going and 575 

the perturbed field, due to heterogeneities within the Earth that scatter waves back up to the 576 

Earth’s surface, is up-going.  The imaging principle of seismic migration is based on the idea 577 

that, when the perturbed field    is back-propagated into the earth, and the unperturbed field    578 

is forward propagated into the earth, the two will arrive at a scatterer at the same time (since the 579 

unperturbed field is the source of the perturbed field).  A scattered at a point    can be detected 580 

(“imaged”) by correlating    with the     (the source associated with   ). This is precisely what 581 

the adjoint formulation is doing: the unperturbed field is forward-propagated in Equation 582 

(4.15b); the perturbed field is back-propagated in Equation (4.15c) (if we assume        ); 583 

and the two field are time-correlated at the position of the heterogeneity in Equation 4.16.  584 

Hence, migration is just using       as a proxy for      (see Equation 8.4).  This 585 

correspondence provides a mechanism for generalizing seismic migration to more complicated 586 

settings [Luo et al., 2013]. 587 

5. Finite Frequency Travel Time Tomography 588 

 589 

5.1. Rationale for Finite-Frequency Measurements. Traditionally, seismic tomography has used 590 

travel times based on “picks” of the onset of motion of a seismic phase on a seismogram, either 591 

determined “by eye” by a human analyst or automatically with, say, a short term average  -  long 592 

term average (STA/LTA)  algorithm [Coppens, 1985]..  Such travel times are easy to measure on 593 

short-period seismograms but problematical at longer periods, owing to the emergent onset of the 594 

waveforms.  A more suitable measurement technique for these data involves cross-correlating 595 

the observed seismic phase with a synthetic reference seismogram, because cross-correlation can 596 

accurately determine the small time difference, say  , between two smooth pulses.  However, the 597 



results of cross-correlation are dependent upon the frequency band of measurement; a phase that 598 

is observed to arrive earlier than the reference phase at one frequency may well arrive later than 599 

it at another.  Consequently, finite-frequency travel times must be interpreted in the context of 600 

the frequency band at which they are measured.  Finite-frequency travel time tomography is 601 

based upon a derivative       (where   is a model parameter) than incorporates the 602 

frequency-dependent behavior of cross-correlations. 603 

 604 

5.2. Definition of Differenial Travel Time. The differential travel time    between an observed 605 

field                   and a predicted field               is defined as the one that 606 

maximizes the cross-correlation: 607 

 608 

                              

(5.1) 609 

Since the cross-correlation is maximum at   , its first derivative is zero there: 610 

 611 

           

  
 
  

   

(5.2) 612 

 613 

5.3. Perturbation in Travel Time due to a Perturbation in the Predicted Wave Field. Suppose that 614 

the predicted field is perturbed from    to        . The cross-correlation is perturbed to 615 

Marquering et al. 1999]: 616 

 617 



                                                                  

(5.3) 618 

 619 

This function has a maximum at, say,         . Expanding          in a Taylor series up to 620 

second order in small quantities yields: 621 

 622 

                            
          

   
 
  

                            

  
 
  

   

 623 

(5.4) 624 

As is shown in Equation (5.2), the second term on the r.h.s. is zero. The maximum occurs where 625 

the derivative is zero: 626 

       

  
     

       

   
 
  

     
        

  
 
  

 

(5.5) 627 

Solving for     yields: 628 

             

  
 
  

  
       

   
 
  

   

(5.6) 629 

The numerator is: 630 

 631 

    

  
 
    

   

  
                        

  
      

                        



(5.7) 632 

and the denominator is: 633 

       

  
 

 

  
                                                  

          
        

  

   
 
  

    

  
                         

  

                           

(5.8) 634 

Consequently, the perturbation in differential arrival time of an observer at    satisfies: 635 

      
               

     
                            

(5.9) 636 

with 637 

     
               

     
         

(5.10) 638 

 639 

5.4. Derivative of Travel Time with Respect to a Model Parameter. According to (A.3), a 640 

perturbation    to a structural parameter   causes a corresponding perturbation in the field: 641 

 642 

       
   

   

  
  

     



(5.11) 643 

Inserting this expression into the formula for    yields: 644 

                         
   

   

  
  

             
        

   

  
  

         

   

  
        

   

  
  

                    
            

(5.12) 645 

 646 

Note that the adjoint differential equation has a source term that is localized at the receiver point 647 

  and has a source time function proportional to          . 648 

 649 

5.6. Fréchet Derivative. The corresponding Fréchet derivative combines                    650 

with 651 

 652 

      
  

  
 
   

                       
  

  
 
   

    
   

  

  
 
   

  
  

(5.13) 653 

to yield: 654 

                                               

(5.14) 655 

from whence we conclude: 656 

 
  

  
 
   

                      
  

  
 
   

  
    



(5.16) 657 

 658 

with, as before, 659 

  
           

(5.17) 660 

 661 

6. An Example Using the Scalar Wave Equation 662 

6.1. Choice of the Observed Field. As in Section 4, we consider an isotropic medium with a 663 

homogeneous background slowness    containing a test point heterogeneity of strength   664 

located at position   . This scenario allows us to address how the alignment changes as the test 665 

heterogeneity is moved to different positions relative to the source and observer The observed 666 

field is taken to be identical to the direct wave in the absence of the heterogeneity; that is, when 667 

   . Since the            and          already align, we can set     .. The differential 668 

equation is                    , where: 669 

       
 

  

   
             

  

   
        

(6.1) 670 

 671 

The source time function      is assumed to be band-limited between angular frequencies    672 

and   , e.g.: 673 

                         



(6.2) 674 

The observed field at the receiver is the direct field   ; that is: 675 

  
    

         

     
  

(6.3) 676 

 677 

6.2. The Partial Derivative of Travel Time With Respect to the Model. Our goal is to construct 678 

      associated with a point heterogeneity at   . First, we construct the function   , which 679 

involves back-propagating, via the adjoint equation, the observed field at the receiver point    to 680 

an arbitrary point   : 681 

    
   

   

     
                   

 

     
 
              

           
   

(6.4) 682 

 683 

Second, we construct the function     , also for an arbitrary point   : 684 

      
  

  
               

  

   

        

     
             

         

     
 

(6.5) 685 

Finally, we combine    and      via an inner product to construct the partial derivative: 686 

   

  
 
  

              
 

     
 
              

           
               

          

     

   



 
   

     
 

 

                
                                

 
   

     
 

 

                
                   

(6.6) 687 

The last form uses the transformation of variables          where: 688 

                             

(6.7) 689 

The quantity    represents the difference in travel times between the direct (S-R)  and scattered 690 

(S-H-R) paths. The quantify       is given by: 691 

                               
 

           
              

  
 

        
         

 
    

(6.8) 692 

We have used the anti-self-adjoint property of the      operator to simplify the last integral. 693 

6.3. Analysis. The derivative       is axially symmetric about the(S-R) line, since     and 694 

    depend only on the perpendicular distance   of    from the line.  Sliced perpendicular to the 695 

line,       is “doughnut-shaped”. 696 

The derivative          whenever     .  This behavior follows from      being an anti-697 

self-adjoint operator, since any quantity equal to its negative is zero: 698 



                                                   

(6.9) 699 

 700 

The time difference   is zero when the test heterogeneity is between   and   and on the(S-R) 701 

line, so         in this case.   This zero makes the ‘hole’ in the center of the doughnut’. 702 

Now consider an oscillatory, band-limited source time function with a characteristic period    703 

Suppose we construct the elliptical volume surrounding the points    and    for which    704 

    . The time integral in (F.2) will have the same sign everywhere in this volume, as will 705 

     .  This region defines the “banana.”  The banana is thinner for short periods than for long 706 

periods (Figure 4). 707 

Moving away from the(S-R)  line along its perpendicular, the time integral, and hence the 708 

derivative, oscillates in sign, as the          and       factors beat against one another. The 709 

derivative also decreases in amplitude (since the factors     and     grow with distance).  710 

Consequently, the central banana is surrounded by a series of larger, but less intense, bananas of 711 

alternating sign. 712 

7. Adjoint Method Applied to the Cross-Convolution Method 713 

7.1. Definition. The cross-convolution method [Menke and Levin, 2003] is used to invert shear 714 

wave splitting and receiver function data for Earth structure [e.g. Bodin et al. 2014].  It is 715 

especially useful for extracting structural information from differences between the several 716 

components of a P or S wave because, unlike other waveform modeling approaches, it does not 717 



require knowledge of the source time function. It compares two different components   
    and 718 

  
    observed at the same position with their predictions    and   , using the measure: 719 

                                         
                    

               

(7.1) 720 

 721 

Here      is a window function that selects a particular seismic phase, such as the P wave, from 722 

the time series. The cross-convolution measure      is a function of Earth structure, as 723 

quantified by a parameter  . Because      scales with the amplitude of the predicted 724 

waveform, determining the model parameters by minimizing           , were      is total 725 

power, is preferable to determining them by minimizing     .  The total power is given by: 726 

                       

(7.2) 727 

 728 

The partial derivative of       with respect to a model parameter is calculated using the 729 

chain rule: 730 

   

  
 
  

       

  
 
  

    

  
 
  

  
     

   

  
 
  

  
   

(7.3) 731 

As we show below, the derivatives       and       can be derived using Adjoint Methods. 732 



G.2. The Partial Derivative of Power With Respect to Model Parameter. The       derivative 733 

is: 734 

   

  
 
  

             
   

  
       

        
   

  
   

        
       

   
   

  
  

       
   

 

  
  

     
   

    
    

      
  

  
 
  

     
   

 

  
     

                 
      

   
  

Here,    is the adjoint field associated with the power derivative. We consider the total power   735 

to be the sum of the power    associated with individual observation points   . The 736 

corresponding adjoint field   
  satisfies: 737 

  
   

    
                   

We now consider a point density perturbation            located at   .  The derivative of 738 

the adjoint operator is: 739 

  
   

 

  
           

   
   
   

 
  

   
 

The power derivative is: 740 

   

  
 
  

                              

G.3. The derivative      . The cross-convolution function   is constructed from the predicted 741 

wave field   through a linear operator   that is independent of the model parameter: 742 



                                                  

                             
           

       

The adjoint of   is the cross-correlation operator         . The partial derivative of   743 

with respect to a model parameter   is: 744 
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(7.4) 746 

Here    is an adjoint field that satisfies:  747 
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(7.5) 749 



 750 

Here   
        . The source term of the adjoint equation involves cross-correlations of 751 

windowed components of the observed field. As with previous cases, we can view the    as the 752 

superposition of contributions   
  of many observation points   . The adjoint equation 753 

corresponding to a single observation point is: 754 

  
    

                    

(7.6) 755 

We again consider the special case of a point density heterogeneity, so that    
     756 

                   (where   is the identity matrix). The partial derivative is then: 757 

    

  
 
  

    
   

 

  
  

    
                  

     
                                

(7.7) 758 

 759 

7.4. Derivatives With Respect to Lamé Parameters.  Assuming a perturbation of the form 760 

             the   derivative of the adjoint wave operator is: 761 
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(7.8) 763 

 764 

 765 

Here the  ’s are abbreviations for the Dirac function         . Assuming a perturbation of the 766 

form              the   derivative of the adjoint wave operator is: 767 
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(7.9) 770 

 771 

 772 

The inner products for       and       include both Dirac delta functions and their spatial 773 

derivatives.  For instance, in the   case: 774 
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(7.10) 776 

 777 

Here we have used the rule                                        . Thus,       778 

and       involve temporal correlations between spatial gradients of both adjoint and 779 

unperturbed fields. The inner product can be succinctly written: 780 

   
   

 

  
     

        

  

                 
         

(7.11) 781 

 782 

Here   is an operator formed from        by replacing each occurrence of   with unity and 783 

each occurrence of        with       . 784 

8. A Cross-Convolution Example Using the Elastic Wave Equation 785 

 786 

8.1. The elastic Green function. In an isotropic and homogeneous solid, the far-field 787 

displacement      for an observer at    and a point force in the    direction at    consists of the 788 

sum of P-wave and S-wave terms (Aki and Richards 2009): 789 



     
        

  

         
                

        
  

         
                     

(8.1) 790 

 791 

Here   and   are the compressional and shear wave velocities, respectively,   is density,      is 792 

the distance from    to   ,     
          is the travel time of the P wave,     

          is the 793 

travel time of the S wave,                    is the direction from source to observer, and 794 

     is the source time function. 795 

We limit our discussion to P-Sv displacements from sources and receivers in the         plane. 796 

A force in the   -direction causes displacement: 797 

 
  

 

  
  

 

 
        

  

         
 

        

               
  

        
  

         
 

        

                
  

(8.2) 798 

Here      is the angle from the   -direction to the observer. A force in the   -direction causes 799 

displacement: 800 

 
  

 

  
  

 

 
        

  

         
 
              

        
  

        
  

         
 
                

        
  

(8.3) 801 

 802 

In each case, the P and S wave particle motions are mutually perpendicular. 803 



8.2. Derivatives of Power and Cross-Convolution Measure with Respect to Model Parameters. 804 

We focus on the displacement field due to a force in the   -direction. located at      and with 805 

a Gaussian source time function. The P wave observed at    consists of a leading “direct” wave 806 

followed by a secondary “scattered” wave.  It is selected from the time series by multiplication 807 

by the boxcar window function     . In the absence of heterogeneity, the predicted P wave 808 

consists only of the direct wave.  Heterogeneity leads to scattering, which results in scattered 809 

waves, some of which may match the observed secondary arrival. We consider a sequence of 810 

point density heterogeneities, each of strength   and located at a position   . The derivative 811 

      quantifies whether one or more of these heterogeneities can improve the fit. 812 

We compute             and       for a grid of   ’s in the       plane using both the 813 

direct and adjunct method: 814 

The direct method computes the derivative by comparing windowed predicted and observed 815 

waves at the position of the receiver.  The predicted wave is the sum of a direct wave plus a 816 

scattered wave.  The former is calculated by forward-propagating P and S waves from the source 817 

to the observer.  The latter is calculated by forward-propagating P and S waves to the 818 

heterogeneity, where they act as secondary sources that generate scattered P and S waves that are 819 

then propagated to the receiver. The direct and scattered waves are summed and windowed 820 

around the P wave arrival time to yield the predicted wave. It’s power and cross-convolution 821 

measure are calculated and compared with those of the direct wave, providing a finite difference 822 

approximation of the derivatives. 823 

The adjoint method computes the each derivative by comparing two time series at the position of 824 

the heterogeneity.  One time series is the second derivative of source forward-propagated to the 825 



heterogeneity.  The other is the adjoint wave field, which is back-propagated from an adjoint 826 

source at the receiver to the heterogeneity. The two time series are the “correlated” by time-827 

integrating their product, yielding the derivative.  Two different adjoint wave fields must be 828 

calculated, one for       and the other for       (Figure 5). 829 

We have verified that these two methods produce the same result.  In both cases, each of the four 830 

scattering interactions (P P, P S, S P and S S) can be isolated simply by omitting a P or S 831 

wave from each of the two stages of propagation. 832 

8.3 Resolution.  Resolving power is an important one for understanding the behavior and utility 833 

of any inverse problem [Backus and Gilbert, 1968, 1971, Wiggins 1972, see also Menke 2014].  834 

We first compute the wave field, observed at an array of receivers, associated with a point-like 835 

heterogeneity in density at   ; it becomes the synthetic data     .  We then perform an 836 

approximate inversion of these data to produce an estimate of the heterogeneity.  Typically, the 837 

heterogeneity spreads out in space, so it can be interpreted as a point spread function that 838 

quantifies resolution. 839 

Suppose that we define a gradient vector             , each element of which corresponds 840 

to the derivative for a point heterogeneity at      of amplitude   . The steepest-descent estimate 841 

of these amplitudes is computed by moving a distance   , in the downhill direction, from the 842 

homogeneous      model (corresponding to   ) to a heterogeneous model      843 

(corresponding to    ): 844 

                                 
  

    
   



       
  

    
                  

  

    
                    

   

     
       

(8.4) 845 

In this approximation, the solution      is proportional to the gradient   , implying that    can 846 

be used as an proxy for the point spread function.  We examine three cases, in which the window 847 

function is chosen to include both P and S waves, or just the P wave, or just the S wave. In all 848 

three cases,    has sharp minimum at   , implying a narrow point spread function and excellent 849 

resolution (although the horizontal resolution in the P wave case is poorer than the other two 850 

(Figure 6). 851 

9. Conclusions 852 

The Adjoint Methods have proven to be essential tools for imaging problems.  On the practical 853 

side, they allow inversions to be organized in an extremely efficient way, allowing what might 854 

otherwise be prohibitively time-consuming calculations to be performed. On the conceptual side, 855 

they allow complex formula to be manipulated into forms in which important quantities, such as 856 

Fréchet derivatives, readily can be identified.  Our review here has stressed the underlying 857 

similarity between different approaches used in the literature, including the derivation of the 858 

adjoint field equations, the use of partial or Fréchet derivatives, and the application of the 859 

method to four different types of data (wave forms, finite frequency travel times, power and 860 

cross-correlation measure). 861 
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.Appendix 973 

A.1. Adjoints of Some Simple Operators. A function        is self-adjoint, since: 974 

                                   

  

    

                               

  

           

(A.1) 975 

 976 

The first derivative      is anti-self-adjoint, since by integration by parts: 977 
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(A.2) 979 

 980 

(provided that the fields decline to zero at        The second derivative        is self-981 

adjoint, since: 982 



 
  

   
 

 

  
 

  
 
 

  
 

 

  
 

  
  

 

 
 

  
  

 

   
 

  
    

 

  
   

  

   
 

(A.3) 983 

 984 

The adjoint of a Green function inner product obeys: 985 

 986 

                                  
         

       

(A.4) 987 

 988 

since 989 

                                             

          
              

      

(A.5) 990 

 991 

The adjoint of a convolution is a cross-correlation: 992 

                     

 

 

           

  

    

                    

 

 

       

   

             

(A.6) 993 



 994 

Here we have employed the transformation       . 995 

The adjoint of a matrix operator is the transposed matrix of adjoints: 996 

  
      

      
  

  

  
   

  

  
     

           

           
 
 

 
  

  
   

                                             

        
            

            
            

     

   
  

  
 
 

 
   

       
   

   
       

   

     
  

  
   

   
    

 

   
    

 
 

 

 
  

  
   

(A.7) 997 

 998 

The operator   of the elastic wave equation is self-adjoint. Each diagonal element is self-adjoint; 999 

for instance, the (1,1) element: 1000 
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(A.8) 1002 

 1003 



 1004 

And each pair off diagonal elements are adjoints of one another; for instance for the (1,2) and 1005 

(2,1) pair: 1006 
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(A.9) 1009 

An adjoint can have different boundary conditions than the original operator.  Consider the first 1010 

derivative       with the initial condition          , written as the operator   .  It has a 1011 

finite difference approximation   , where: 1012 

     

     
     
     
     

     

(A.10) 1013 

 1014 

The first row of    involves only the first element of   and is the initial condition; the 1015 

subsequent rows are the first differences between adjacent elements of   and is the derivative.  1016 

The corresponding approximation of operator    is the transposed matrix: 1017 

       

     
     
     
     

  



(A.11) 1018 

Then boundary condition has moved to the last row of     has become an end condition and, as 1019 

expected, the signs of the first differences have flipped. 1020 

A. 2. Derivative of the Inverse of an Operator.  Perturbation theory can be used to show that, for 1021 

a small number  , the inverse of       is [Menke and Eilon, 2015]: 1022 

        
     

      
      

         

(A.12) 1023 

This expression is verified by showing that applying the operator to its inverse, and the inverse to 1024 

the operator, both yield the identity operator  : 1025 
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(A.13) 1027 

The derivative rule then follows from the definition of the derivative: 1028 

 

  
       

    

    
  
  

    
  

    

  
      

  

  
     

(A.14) 1029 

A.3. The Adjoint Field as a Lagrange Multiplier.  For clarity, we derive the derivative       1030 

(Equation 3.2) in the discrete case where the field        is approximated by a discrete vector    1031 

with          that contains        evaluated all permutations of components, positions and 1032 



times. We consider a      -dimensional vector space consisting of the elements of the field 1033 

plus a single model parameter   (Figure A1). In this view, the elements of the field and the 1034 

model parameter are all independent variables. Using Einstein notation, where repeated indices 1035 

imply summation, the total error is        with      
      . The error is independent of  , 1036 

and is axially-symmetric about the line       
    (cylinder in Figure A1). The field obeys a 1037 

matrix equation                  , where the     matric      is a discrete analogue of 1038 

a differential operator      and its associated boundary conditions.  The use of the abbreviation 1039 

   highlights the sense in which each row of the matrix equation is a separate constraint applied 1040 

at a different point in space and time. Since, for any given value of  , the matrix equation can be 1041 

solved for a unique field      , but the value of   can be freely varied, these constraint trace 1042 

out a curve (grey line in Figure A.1). We want to know the gradient of the error resolved onto 1043 

this curve, a quantity that we will refer to as           . 1044 

The explicit calculation of            in Section 3.2 starts with: 1045 

  

  
    

   

  
     

   

  
     

  

  
 

(A.15) 1046 

and substitutes in the solution       .  The error is then an explicit function of the model 1047 

parameter and can be differentiated with respect to it: 1048 

   

  
 
   

     
 

  
           

    

  
        

  

  
     

       
  

  
    

   

  
      

 

  



(A.16) 1049 

Note that we have used the fact that   is not a function of   and have applied the rule 1050 

                      . Defining the adjoint field to be         leads to equations: 1051 

   

  
 
   

   
   

  
  

 

                  

(A.17) 1052 

We obtain the continuous limit by replacing vectors with functions, matrices with operators and 1053 

the dot product with the inner product: 1054 

   

  
 
   

    
   

  
λ                 λ    

(A.18) 1055 

These expressions are the same as those derived previously in Equation 3.2. 1056 

The same result can be achieved implicitly, using the method of Lagrange multipliers.  We focus 1057 

on a point    along the curve     . The derivative resolved onto the curve is the part of    1058 

that is parallel to the curve; or equivalently, the part of    that is perpendicular to the gradients 1059 

    of all of the constraints. 1060 

The standard way of removing the part of    that is parallel to      is to subtract from    just 1061 

the right amount of each    .  We start by writing: 1062 

                    

(A.19) 1063 



where    are a set of unknown coefficients (called Lagrange multipliers) and the factor of   has 1064 

been added to simplify the subsequent derivation. The coefficients are determined by the 1065 

conditions that         is perpendicular to    : 1066 

              

(A.20) 1067 

Various derivatives are needed to perform this dot product: 1068 

  

   
    

   

   
     

   

   
                               

  

  
                  

   

   
 

 

   
                

   

   
                             

   

  
 

 

  
            

    

  
                  

  

  
  

(A.21) 1069 

Defining        ,               and                
  we have: 1070 

 

        

   

  
 
   

             
   
 

    
   

  
  

  
 
  

(A.22) 1071 

The coefficients   are determined by that condition that the dot product              is zero: 1072 



            
   

  
  

  

  
    

(A.23) 1073 

The choice 1074 

      

(A.24) 1075 

zeros the first term on the l.h.s. It also zeros the second term, since: 1076 

   
   

  
  

  

  
     

   

  
     

  

  
         

   

  
  

    

  
  

     
   

  
  

 

  
           

   

  
  

  

  
   

(A.25) 1077 

Here we have used the rules         ,        and                      .  The 1078 

derivative       is zero because, in the context of this derivation,   and   are independent 1079 

variables. The lower part of Equation (A.20) gives: 1080 

   

  
 
   

   
  

  
  

 

    
   

  
  

 

  

(A.26) 1081 

This equation and Equation (A.14) are precisely the same as those derived by the explicit 1082 

method.  Thus the Adjoint field   can be interpreted as a Lagrange multiplier that arises from the 1083 

constraint that the field exactly satisfies a differential equation at every point in space and time.  1084 



Menke, Figure 1. 1085 

 1086 

 1087 

Fig. 1. (A) The Direct Method focuses on the two fields incident upon a receiver at   : direct 1088 

wave from the source at    that follows the    path; and a scattered wave that has interacted 1089 

with a heterogeneity at    and follows the     path. (B) The Adjoint Method focuses upon the 1090 

fields incident upon the heterogeneity at   , which includes the direct wave that follows the    1091 

path and the adjoint field that follows the    path.  The source of the adjoint field depends upon 1092 

the direct wave at the receiver, which follows the    path. 1093 

1094 



Menke, Figure 2. 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

Figure 2. (A) The partial derivative       (colors) for a point slowness heterogeneity in a 1101 

homogeneous acoustic whole space. The amplitude of the derivatives track ellipses of equal 1102 

travel time from source (lower black circle) to heterogeneity to receiver (upper black circle). (B) 1103 

The source time function        . (C) The source time function         time-shifted to the 1104 

receiver at   . (D) The error         at the receiver. (E) The second derivative         , time-1105 

shime shfted to a heterogeneity at    (white circle in Part A). (F) Comparison         ,(red 1106 

curve) and        . The overall in high-amplitudes leads to one of the elliptical bands in Part A. 1107 



Menke, Figure 3 1108 

 1109 

 1110 

Fig. 3.  Quantities associated with the banana-doughnut kernel      . (A)-(C).  Three band-1111 

limited pulses          originating from a source at    and observed at a receiver at     The 1112 

peak frequency of these fields increases from A to C. (D)-(F) Banana-doughnut kernels (colors) 1113 

for point slowness homogeneities distributed on the       plane corresponding to the pulses in 1114 

Parts A-C.  Note that the kernels narrow and become more linear with increasing frequency, as 1115 

diffraction behavior become less importance and ray-like behavior begins to dominate.1116 



Menke, Figure 4. 1117 

 1118 

 1119 

Fig. 4.  Geometry used in the cross-convolution example See text for further discussion. 1120 

  1121 



Menke, Figure 5. 1122 

 1123 

Fig. 5. Quantities associated with the cross-convolution partial derivative       and the power 1124 

partial derivative      . (A) The window function  . (B) The horizontal (black) and vertical 1125 

(red) components of the unperturbed field at the observer. (C) The horizontal (black) and vertical 1126 

(red) components of the observed field at the observer, after windowing. (D) The four 1127 

components of the cross-correlation function  . (E) The source   of the adjoint field λ (F) The 1128 

second derivative of the unperturbed field at a heterogeneity (location marked on Part I). (G) The 1129 

adjoint field λ, which is associated with the cross-correlation measure. (H) The adjoint field  , 1130 

which is associated with power. (I) The partial derivative       (colors) for point density 1131 

homogeneities distributed on the       plane The source and receiver and the heterogeneity 1132 

singled out in Parts A-H are shown (circles) and the contribution of various scattering 1133 

interactions are maked. (J) Same as Part I, but for the partial derivative      . (J) Same as Part 1134 

I, but for the partial derivative      . 1135 



Menke, Figure 6. 1136 

 1137 

Fig.6. Quantities associated with the resolution test of the cross-convolution method. (A) The 1138 

horizontal-component of the wave field (curves) is observed by a linear array of receivers and is 1139 

due to a source in an elastic medium containing a “true” point heterogeneity (located in the white 1140 

box in Part B)..  The vertical component (not shown) was also used. P and S wave windows are 1141 

shown (gray shading). (B) The partial derivative       (colors) for point density 1142 

homogeneities distributed on the       plane.  The source (circle) is at the lower left and the 1143 

linear array of receivers (line of triangles) is near the top. The minimum (inset, blue) is 1144 

collocated with the true heterogeneity and is spatially-localized, implying excellent resolution. 1145 

(C) Same as Part B, except that the data are windowed around the P wave arrival. (C) Same as 1146 

Part B, except windowed around for the S wave. 1147 
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Menke, Figure 7 (really Figure A.1.) 1149 

 1150 

Fig. A.1. Geometrical interpretation of the process of computing the gradient of the total error 1151 

subject to constraints that the field satisfies a differential equation. See text for further 1152 

discussion. 1153 

 1154 

 1155 


