Notes on RC Circuits
Bill Menke, November 9-13, 2017

These notes analyze Huebner and Dillenburg’s (1995) method of determining the resistivity of a
rock sample by measuring the frequency-dependent impedance and plotting its real and
imaginary parts on the complex plane.

1. Review of the RLC Series Circuit:
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Figure 1. RLC series circuit with resistor R, inductor L and capacitor C in series. The source
supplies an alternating voltage V.

Circuit impedance:
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Kirchoff Voltage Law: The directed sum of the electrical potential differences (voltage) around
any closed network is zero
Vi, + Vg + Ve =V, exp(iwt)
Resistor; voltage proportional to current:
Vi = RI

Inductor; voltage proportional to rate of change of current

V, = L—
L dt

Capacitor; voltage proportional to total charge:
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Substitute into Kirchoff Voltage Law:
LdI+RI+1fI(t’)dt’—V (iwt)
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Take derivative:
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Assume solution I = I, exp(iwt):
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Solve for impedance
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2. Review of the RC Series and Parallel Circuits
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Figure 2. (A) RC series circuit and (B) RC parallel circuit, with resistor R and capacitor C. The
source supplies an alternating voltage V.

2.1 Series case. This is just the L = 0 case of the RCL series circuit:

Vo 1

Z = E =R-—i (R)
2.2. Parallel case. When the voltage at the source V = V; exp(iwt) is known, the current
flowing through the resistor is Iy = V/R. By Kirchoff Current Law, which states that the net
current in any junction of wires equals the net current out, the current flowing through the
capacitor is:

exp(iwt)

I = Iy exp(iwt) — V, R

where I, exp(iwt) is the current at the source. The voltage across the capacitor must equal that
across the voltage source, so:
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3. Analysis of Huebner and Dillenburg (1995). The formula, above, matches the one in Huebner
and Dillenburg (1995); that is, the rock is equivalent to a resistor and capacitor in parallel. The
real and imaginary parts are:

Zr = real(Z) = m
—R(RCw)

Zi = 1mag(Z) = m

Recall that the formula for a circle of radius r and centered at (x., y.) in the (x,y) is (x —
xc)* + (y — yc.)? = r?. Consider now the complex impedance plane (Z,, Z;). The real and
imaginary parts of the impedance satisfies:
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That is, when plotted on the complex (Z,, Z;) plane, the real and imaginary parts of the
impedance fall on a circle of radius %R centered at (%2R, 0). This is demonstrated in the
following plot, where the dots are equally spaced in frequency.
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Figure 3. Impedance of an RC parallel circuit plotted in the complex plane forR = 2,C = 0.5
and a suite of equally-spaced frequencies 0 < w < 167 (dots).
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