Nonuniqueness in Anisotropic Traveltime Tomography under the Radon Transform Approximation

Bill Menke, December 2017 and January 2018

(This work follows up upon my 2015 BSSA paper on the same subject).

0. Summary. Given a 2D slowness function m(x, y) =

 $A(x, y) + B_C(x, y)\cos(2\theta) + B_S(x, y)\sin(2\theta) + C_C(x, y)\cos(4\theta) + C_S(x, y)\sin(4\theta)$

and travel times related to it through a Radon transform, we show that:

An *A* can always be found that mimics a set of (B_c, B_s) and/or a set of (C_c, C_s) ;

A pair (B_c, B_s) can always be found that mimics an A, and furthermore, an infinite family of such pairs exist;

A pair (C_C, C_S) can always be found that mimics an A, and furthermore, an infinite number of such pairs exist; and

A pair (B_C, B_S) can always be found that mimics a pair (C_C, C_S) , and vice versa; and furthermore, an infinite number of such pairs exist.

Given a reference structure $m_0(x, y)$, a "null solution" (B_C, B_S) pair can be constructed for which the travel time is identically zero (as similarly for a (C_C, C_S) pair).

1. Preliminaries. Assuming straight line rays, the travel time $d(u, \theta)$ of the structure m(x, y) is computed wia the Radon transform:

$$d(r,\theta) = \int_{L(u,\theta)} m(x,y) d\ell \equiv \mathcal{R}m$$

The line integral is taken over a straight line *L* with arc length ℓ , parameterized by its perpendicular distance *u* to the origin and the angle θ , measured counter-clockwise, of that the perpendicular makes with the *x*-axis. The function $d(u, \theta_0)$ with θ_0 held constant is called a projection.

The Fourier slice theorem shows that the 1D Fourier transform \mathcal{F} of a projection, which takes u into k_u , is the 2D Fourier Transform of the original function, evaluated on a line of angle θ_0 in the wavenumber plane:

$$\bar{d}(k_u,\theta_0) = \mathcal{F}d(u,\theta_0) = \overline{m}(k_u \cos(\theta_0), k_u \sin(\theta_0)) \quad \text{with } \overline{m}(k_x,k_y) \equiv \mathcal{F}\mathcal{F}m$$

Roughly speaking, the Fourier slice theorem implies that the Radon transform is invertible under a broad range of conditions. Consequently, a Radon transform has no null space; that is, there are no non-zero functions m(y, x) for which $\Re m = 0$.

Multiplying the Radon transform by a smooth function $F(\theta)$ of angle θ to yield $d(r, \theta)F(\theta)$ only changes the overall scaling of a projection and, because of the Fourier slice theorem, corresponds to a fan filter in the (k_x, k_y) domain:

$$\overline{\overline{m}}(k_x, k_y) F(\tan^{-1}(k_x/k_y))$$

Furthermore, if $|F(\theta)| \le 1$, fan-filtering does not increase the overall energy of the 2D Fourier, so by Parseval's theorem, the energy in the (x, y)-domain image must not increase. Roughly speaking, fan filtering is a very-well behaved process that is unlikely to affect the invertibility of the Radon transform.

2. Anisotropic traveltime tomography with the Radon transform. Consider a "slowness" function m(x, y) defined as:

$$m(x,y) =$$

$$A(x,y) + B_C(x,y)\cos(2\theta) + B_S(x,y)\sin(2\theta) + C_C(x,y)\cos(4\theta) + C_S(x,y)\sin(4\theta)$$

Here $\theta = 0$ has the interpretation of the fast direction. The Radon transform of m(x, y) is:

$$d(r,\theta) = \mathcal{R}A + \mathcal{R}[B_C \cos(2\theta)] + \mathcal{R}[B_S \sin(2\theta)] + \mathcal{R}[C_C \cos(4\theta)] + \mathcal{R}[C_S \sin(4\theta)]$$

The trigonometric functions can be moved outside the Radon transforms, since they do not vary along the transform's straight line integration path:

$$d(r,\theta) = \mathcal{R}A + \cos(2\theta) \mathcal{R}B_{c} + \sin(2\theta) \mathcal{R}B_{s} + \cos(4\theta) \mathcal{R}C_{c} + \sin(4\theta) \mathcal{R}C_{s}$$

Note that the term $\cos(2\theta) \mathcal{R}B_c$ implies fan filtering of $B_c(x, y)$ (and similarly for the other terms containing trigonometric functions).

3. Nonuniqueness.

3.1. Isotropic structure equivalent to anisotropic structure. Consider case *A* where only A(x, y) is nonzero, and case *B* where only $B_c(x, y)$ and $B_s(x, y)$ are nonzero. The two cases can be made to imply the same travel times with the choice:

$$A = \mathcal{R}^{-1}d_B$$
 with $d_B \equiv \cos(2\theta)\mathcal{R}B_C + \sin(2\theta)\mathcal{R}B_S$

Since d_B is just the sum of fan-filtered versions of functions whose Radon transforms are presumed to exist, we expect its inverse Radon transform to exist, too. Hence, under a broad range of circumstances:

An *A* can always be found that mimics a set of (B_C, B_S) .

Similarly, for a case C where only $C_c(x, y)$ and $C_s(x, y)$ are nonzero, the equivalent A is:

$$A = \mathcal{R}^{-1}d_C$$
 with $d_C \equiv \cos(4\theta) \mathcal{R}C_C + \sin(4\theta) \mathcal{R}C_S$

Hence, under a broad range of circumstances:

An A can always be found that mimics a set of
$$(C_C, C_S)$$
.

In the example, we find the *A* equivalent to a hypothetical (B_C, B_S) and show that they have the same traveltime *d*:

 $A(x, y) = A(x, y) \cos^2(2\theta) + A(x, y) \sin^2(2\theta)$

Consider case A where only A(x, y) is nonzero:

 $m(x, y) = A(x, y) \cos^2(2\theta) + A(x, y) \sin^2(2\theta)$

and case *B* where only $B_c(x, y)$ and $B_s(x, y)$ are nonzero:

$$m(x, y) = B_C(x, y)\cos(2\theta) + B_S(x, y)\sin(2\theta)$$

By matching terms, two cases can be made to have the same travel time:

$$\mathcal{R}B_{C} = \left(\frac{\cos^{2}(2\theta)}{\cos(2\theta)}\mathcal{R}A\right) \text{ or } B_{C} = \mathcal{R}^{-1}[\cos(2\theta)\mathcal{R}A]$$
$$\mathcal{R}B_{S} = \left(\frac{\sin^{2}(2\theta)}{\sin(2\theta)}\mathcal{R}A\right) \text{ or } B_{S} = \mathcal{R}^{-1}[\sin(2\theta)\mathcal{R}A]$$

Note that this approach relies upon the zeros in the $\cos^2(2\theta)$ and $\sin^2(2\theta)$ in the numerators cancelling the poles in the $\cos(2\theta)$ and $\sin(2\theta)$ in the denominators, so that the fractions are finite. If we could find a pair of functions $c(2\theta)$ and $s(2\theta)$ with the property $c(2\theta) + s(2\theta) = 1$ and with zeros in the appropriate positions, we could write:

$$A(x, y) = A(x, y) c(2\theta) + A(x, y) s(2\theta)$$
$$B_{c} = \mathcal{R}^{-1} \left(\frac{c(2\theta)}{\cos(2\theta)} \mathcal{R}A \right) \text{ and } B_{s} = \mathcal{R}^{-1} \left(\frac{s(2\theta)}{\sin(2\theta)} \mathcal{R}A \right)$$

Evidentially, many such pairs of function exist, including:

$$c(2\theta) = \cos^{2n}(2\theta)$$
 and $s(2\theta) = [\cos^2(2\theta) + \sin^2(2\theta)]^n - \cos^{2n}(2\theta)$

with $n \ge 1$. Hence we conclude:

A pair (B_C, B_S) can always be found that mimics an A, and furthermore, an infinite family of such pairs exist.

By replacing 2θ with 4θ in the above argument, we conclude:

A pair (C_C, C_S) can always be found that mimics an A, and furthermore, an infinite family of such pairs exist.

In the example, we find two examples of $(B_C, B_S)'s$ that are equivalent to an A:

We have verified that they have the same traveltime d (not shown).

3.3. Two-theta anisotropic structure equivalent to four-theta anisotropic structure, and

vice-versa. We can find the (C_c, C_s) equivalent to a (B_c, B_s) by using the method of Section 3.1 to find the *A* equivalent to (B_c, B_s) and then using the method of Section 3.2 to find the (C_c, C_s) equivalent to that *A*. Similarly, we can find the (B_c, B_s) equivalent to an (C_c, C_s) by using the method of Section 3.1 to find the *A* equivalent to (C_c, C_s) and then using the method of Section 3.2 to find the (B_c, B_s) equivalent to that *A*. Recalling that the method of Section 3.2 is non-unique, we conclude:

A pair (B_C, B_S) can always be found that mimics a pair (C_C, C_S) , and vice versa; and furthermore, an infinite family of such pairs exist.

In the example, we find a (C_C, C_S) equivalent to a (B_C, B_S) :

and a (B_C, B_S) equivalent to a (C_C, C_S) :

4.0 Anisotropic Null Solution. Consider two-theta anisotropic travel time functions (B_c, B_s) constructed from a reference solution $m_0(x, y)$ in the following way:

 $B_C = \mathcal{R}^{-1}(\sin(2\theta) d_0)$ and $B_S = -\mathcal{R}^{-1}(\cos(2\theta) d_0)$ with $d_0 = \mathcal{R}m_0$

The travel time d_B associated with this (B_C, B_S) pair is identically zero:

$$d_B = \mathcal{R}[\cos(2\theta)B_C + \sin(2\theta)B_S] = \cos(2\theta)\mathcal{R}B_C + \sin(2\theta)\mathcal{R}B_S = \cos(2\theta)\sin(2\theta)d_0 - \sin(2\theta)\cos(2\theta)d_0 = 0$$

Thus, a two-theta null solution can be constructed from any reference solution m_0 . The above argument can be extended to four-theta anisotropy simply by replacing 2θ with 4θ . Hence:

Given a reference structure $m_0(x, y)$, a "null solution" (B_c, B_s) pair can be constructed for which the travel time is identically zero (as similarly for a (C_c, C_s) pair).

In the example below, we construct a (B_C, B_S) null solution verify that it has zero travel time.

