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0. My Agenda.  The goal of the trans-dimensional Metropolis-Hastings (MH) algorithm is to 

generate a large number of realizations of a trans-dimensional probability distribution     , 

where   is a state variable.  My goal is to work through simples examples of trans-dimensional 

MH, in order to identify issues needing further research. 

1. The MH test parameter. For current state   and proposed successor state   , the MR test 

parameter   is typically stated: 

  
          

         
 
       

       
   

where           is the target probability function for observed data      and         is the 

probability function for the proposed successor state   given current state  .  Suppose now that 

the current state   has   dimensions and the successor state    has    simensions.  The 

equivalent statement for probability density functions of the form               is: 

  
               

            
 
          

            
   

          

         
 
       

       
 

Here   is a individual state variable in the  -dimensional space of  . The probability functions 

are just replaced by the analogous probability density functions.  However, the cancellation of 

volume elements is between two               pairs and not between one pair of     ’s and one 

pair of       ’s.  Thus, care must be taken to ensure that the      and        in a pair have the 

same dimension. 

Note that if we used Bayes’ rule to write: 

                                                                     

then: 

                
                   

        
 

and: 

  
                     

                   
 
          

            
  

                

                  
 
       

        
 

 



I note that, in the literate, one usually sees a factor of the Jacobian   (with            ) added 

to the definition of  , above.  I do not understand why it is needed; all the volume elements 

appear to cancel out. 

2. Use of Discrete Variables. In the test programs, I use a state described by a finite number of 

discrete (integer) parameters, and probability functions      and         that describe actual 

probabilities of these states.  Thus,           means that state   occurs 1% of the time.  I 

don’t believe that a discrete approximation of a continuous variable poses any special problem, 

since our ability to resolve the value of variables like layer thickness and slowness is so limited 

by data quality. 

3. Effect of Changing Dimension of Ratio of Q’s.  Suppose that                      

         ; then all other things being equal,    would be accepted 50% of the time.  Now 

suppose that   is in a space that has one less dimension than the space of    (that is       ) 

and that the probability of the successor staying in the  -dimensional space is about the same as 

moving to   -dimensional (because they are adjacent dimensions). If the  ’s are Normal, the 

number of high-probability elements in the  -dimensional space scales as   elements, and the 

number in the   -dimensional space, as    elements. Thus,                  .  The 

probability of acceptance increases by a factor of  .  Thus, a jump to a higher dimensional space 

tends to accepted, unless the decrease in probability is exceedingly low. 

4. MH use of Q. The MH algorithm requires that both         and         be evaluated for 

arbitrary values of   and   , and furthermore, that a proposed successor state    be realized from  

        for an arbitrary current state  .  These two requirements pose practical challenges, 

which I address in the following way: 

        is built up by assuming that individual state variables   are uncorrelated: 

                

 

 

Since both   and    are a finite number discrete variables, they can be represented by a set of 

integers in the     range. The function         is therefore a     table            
   of 

real values.  No element of     may be less than unity, else the MH test parameter   may be 

singular. 

Since MH works for a wide range of        ’s,      can be merely an approximation to        
   

Furthermore, the approximation can be chosen in a way that facilitates the processes of creating 

realizations of        .  Suppose that        , with fixed   , should approximate a known 

function      .  We choose an approximation that satisfied three conditions:           ;  for an 

specified integer    , every element of      is an integer; and        .  This 

approximation can be made arbitrary accurate by choosing a sufficiently large  . 



A     that satisfies these three conditions is constructed in the following way:  First, set   

   ; Second, set            and define         ; Third, set                 ; Fourth, if 

any     is zero, reset it to unity; Fifth, if         add/subtract unity from randomly chosen 

entries until         (but never decreasing    below unity); and Sixth, set              . 

An example of a       approximately Normal     with a mean of about   and a standard 

deviation of about     is: 

 

 

A     companion table     facilitates the generation of realizations. This table is defined so 

that each column   has exactly      occurences of the value  , exactly      occurences of  , 

etc., with the order of the occurrences being arbitrary.  Then, if ℓ is a random integer in the range 

   ,     is approximately a realization of       
  .  An example of a        table     

corresponding to the         above is: 



 

The     reconstructed by binning a set of     realizations matches the true     very well: 

 

 



5. Generating a Proposed Successor State. I view the process of generating a proposed 

successor state    from a current state   as consisting of three steps: 

First, the dimension    of the proposed successor state is generated by realizing        , where 

  is the dimension of the current state. 

Next, a deterministic reference state    is created, with    dimensions but as close to the current 

state   as possible. 

Finally, the proposed successor state    is created by realizing          (but with fixed 

dimension   ). 

This process is illustrated below for the          case:

 



 

In the case of a layered earth model, where each layer is described by a layer thickness and layer 

slowness, the reference state is defined in different ways, depending on whether the number of 

layers (that is, the dimension) remains the same, increases or decreases. 

Case     . The reference state is the current state. 

Case      case. The reference state is created by pseudo-randomly choosing a pair of 

layers and aggregating them, and repeating the process as many times as necessary to achieve the 

necessary number of layers.  Each time a pair of layers is aggregated, the slowness of the 

resulting single layer is the thickness-weighted average slowness of the two original layers. 

Case     . the reference state is created from the current state by pseudo-randomly 

choosing a layer and splitting it into two layers at a pseudo-randomly choosing a point, and 

repeating the process as many times as necessary to achieve the necessary number of layers. 

Each time, two pieces are assigned the same slowness as the original layer. 

The pseudo-random number   in the range       is generated using the rule: 

               

where   is the slowness vector associated with the state and   is a specified vector of prime 

numbers.  The pseudo-random number   is a deterministic function of the state. 



6. A Simple Example of a Trans-Dimensional Target Distribution.  Here the state   is either 

one dimensional (with probability        or two-dimensional (with probability     .  The 

one dimensional distribution is unimodal in a single variable    and the two-dinensional 

distribution is bimodal is a pair of variables        .  Each   is a inter in the range     . 

 

7. A Simple Test of Algorithm. MH was used to generate     realizations of   using the target 

distribution from 6, and histograms of them were used to reconstruct     .  The  ’s were 

discrete approximation to Normal distributions, as described above.  The reconstruction 

distribution closely matches the true distribution, with           and: 



 

8. A More Complicated Test of the Algorithm.  The test uses a model that consists of layers 

over a half-space.  The model has   layers, each with a thickness    and a slowness   , and the 

half-space has a slowness, so that an  -layer model is represented by       parameters.  All 

parameters are discrete and bounded,        layers,         layer thicknesses and 

        layer and half-space slownesses. In this example, we use      ,       and 

     . 

The true (or target) distribution      is the product of truncated geometric distributions for 

number of layers, layer thicknesses and layer and halfspace slownesses, with “success” 

parameters of        ,         and        , respectively. The geometrical distribution 

monotonically decays with  , with the rate being controlled by the success parameter. 

I chose the geometric distribution because it is a non-trivial discrete distribution that has a simple 

analytic formula. 

I used MH to generate     realizations of the model state.  I then built histograms of number of 

layers, thicknesses and slowness and compared them to the geometric distribution.  The match is 

excellent (see Figure).  Note, however, that the verification is incomplete, since I checked only 

three projections of a multivariate distribution with: 

       

  

   

     



dimensions.  Note also that even     realizations sample this high dimensional space only very 

sparsely. 

 

9. Issues associated with the over-fitting the data.  A model with a larger number of 

parameters tends to over-fit the data, relative to a model with a lower number of parameters. This 

behavior is guaranteed to occur in trans-dimensional layered models, because a model space with 

   layers contains the space of all       models. It is the subspace in which two adjacent 

layers have the same slowness. In fact, as is shown in the figure below, it contains many 

instances of this model, since    layers can be aggregated into    layers in many different ways. 

Thus, the error of the a best fitting higher dimensional model can never be worse than that of a 



lower dimensional model, and may by slightly better, since the higher dimensional model may be 

better able to fit noise.  

 

Consider    Normally-distributed observed data   
    with prior variance   

 , together with 

corresponding predicted data   
   

.  The total error: 

   
  

 

  
 

  

   

                
      

     

is approximately chi-squared distributed with             degrees of freedom, where   

is the number of layers. 

Suppose that the probability of the data given state   is                 , where       

         is a multivariate Normal distribution in the individual errors. Supposing two states, 

   and   , the ratio   of their likelihoods is: 

   
      

      
 

                 

This definition of   is problematical in the trans-dimensional case, as is illustrated in the 

following example. Suppose that      , so that           and           and 

suppose two experiments, one associated with state    with error       and the other 



associated with state    with error        .  These two errors are not significantly different 

when judged by a chi-squared test, because both fall within one standard deviation of the mean. 

One cannot rule out the Null Hypothesis that the difference in fit is due to random variation; state 

   does not fit the data significantly better than state   . However, the ratio of likelihoods of the 

two states is             . Furthermore, the ratio grows very quickly with the number of 

data; for example, the comparable ratio is about         when       . Assuming, for the 

moment, a uniform prior        , so that       
          

       , we find that    is 

much more probable than   , even though     and    fit the data to similar degrees.  This 

seemingly contradictory result can be resolved in a case where the number of models with the 

same error grows very quickly with  .  (This behavior occurs in classical chi-squared analysis, 

where the number of models with error   scales as the surface area of a  -dimensional 

hypersphere of radius  ). Then we could understand that yes, while the probability of   , 

relative to that of    is not very high, this is offset by the existence of many alternatives to   , all 

with the same error, so the probability of selecting one of them is still high.  However, this 

reasoning is making the assumption that the states span spaces of equal dimension, and is not 

true when the states have different dimensions. 

This issue is illustrated in the following ultra-simplified trans-dimensional model.  

Consider uncorrelated observed data      of length      and a corresponding auxiliary vector 

           . Now suppose a trans-dimensional model consisting of an     parameter 

constant model, such that                
 ; and an     parameter linear model      

                
 .  Note that the linear model contains the constant model as a special 

case, so the error of the former can never be less than the error of the latter. The likelihood is 

defined as                   , where         
 , with             and   

         

is the variance in the data. Part A of the figure, below, shows synthetic data, realized for the 

constant model with   
      .  Part B shows the log-likelihood for the constant (black) and 

linear model spaces (red and green corresponding to two orthogonal slices through the peak of 

the linear model). In this example, best-fitting constant model fits the data almost (but not quite) 

as well as the linear model.  Part C shows a revised version of the log-likelihood, adjusted for the 

different degrees of freedom for the two model; that is,   had been multiplied by          . 

The constant model now has the larger log-likelihood.  Now suppose that the prior has been 

adjusted so that the constant model and the linear model are equally likely when they have the 

same log-likelihood.  The fraction of constant realizations that occur in an ensemble is shown for 

the uncorrected (Part D) and corrected (Part E) log-likelihood functions.   In the uncorrected 

case, the typical      is associated with only about 40% constant models, even though the true 

model is constant.  The correction increases the percentage, but only to 50%.  Parts F-J of the 

figure show corresponding results when the true model is linear with        
             .  

Now linear models are favored in both cases, though not overwhelmingly so. 



 

I consider the preceding discussion a strong argument for correcting the error for the degrees of 

freedom; that is replacing   with: 

 

 
  

This change leads to no change in relative likelihood when comparing two models having same 

dimension, but it offsets the tendency for a high-dimensional case to over-fit the data. 

 As an alternative, we might consider writing: 

                            

where        is the chi-squared distribution. The ratio   of likelihoods is then: 

  
          

          
 

                                                

                                        

 



where      is the gamma function.  When this version of the likelihood is used, two models that 

fit the data similarly well, when judged against the chi-squared distribution, will have similar 

probabilities of acceptance.  One might argue that this choice of   gives too much weight to 

states with large error, since          falls off much more slowly with   than         . 

However, the criticism is only valid when         spans the full space of the data, so that the 

number of models with error   grows very quickly with   (as they do in classical chi-squared 

analysis).  In cases where the   
   

’s are very highly correlated with one another, the   ’s may 

not span the whole space and the alternative assumption embodied in above definition of   may 

be appropriate. 

 I note that the calculation of        can be expedited by tabulating the values of 

                 , for there are only    of them.  I also note that   is best calculated as  

            and not as                      , for the division in the latter is very unstable at 

points where             . 

10. Issues associated with the model-space volume and the choice of the prior distribution.   

One possible choice of the prior is that every possible configuration has equal probability (the 

configuration-uniform prior).  A  -layer model has a total of              
    

configurations, so that the total prior probability of  -layer models is: 

                        
  

   
  
   

 

Another possibility is to define the prior so that models of any number of layers have equal 

probability (the layer-uniform prior).  In this case, the prior probability of a configuration must 

decrease with its number of layers: 

      
      

         
   

                   

Both priors are plausible, but they can lead to different outcomes.   

First, consider the case of the configuration-uniform prior. Suppose that the best-fitting model 

with    layers fits the data as well as a model with       layers, so that the ratio of 

likelihoods is unity.  Even so, the total probability    

  of all    models will typically be much 

higher than the total probability    

  of all    models, because the model space for the former has 

the higher number of dimensions. For example, consider a likelihood function that, for fixed 

number of layers  , is Gaussian: 

                                                  



               
   

               
   

 
  

       

where      are the      model parameters associate with  ,      are their deviations from 

the mean, and   
   

 is a covariance matrix. At fixed  , the total probability is: 

  
          

   
       h                        

   
 
   

 

The ratio             is, in general a strong function of covariance. Consider, for instance, the 

special case   
   

   
  , it is                 

 . Now suppose that     
     

     
   

   and 

     grid nodes.  Then the ratio of total probability is about a factor of 25; that is, models with 

      layers occur twenty-five times as often in a set of realizations than do models with   

layers, even though both fit the data equally well. 

Now consider the case of the layer-uniform prior.  The ratio of total probability now includes the 

ratio of priors: 

        

      
 

  

    
 

         
   

               
       

   

Typically, the full range of model parameters are chosen to be much larger than the variance, so 

the ratio of priors       
   overcorrects the factor of     

 , leading to a situation where 

realization with       layers are under-represented when compared to models with   layers.  

Furthermore, the results depend strongly on the choices of    and   , whereas we would have 

preferred it to be insensitive to them, as long as they were chosen to be large enough that model 

volume completely enclosed the region of high probability. 

Most authors use layer-uniform priors.  However, I propose using an area-uniform prior, defined 

as: 

      
      

  

           
   

 

The area-uniform prior corrects for the tendency of the model volume to grow with dimension, 

but does not depend upon the arbitrary choice of bounds. However, it can be criticized because it 

depends on the data, whereas a fully-consistent prior should not.  However, the data enters only 

weakly;       depends exclusively on the behavior the covariance   
   

, and that is controlled 

by the mapping from state   to slowness function       and the functional relationship between 

slowness and the predicted data   
   

.  When these two relationships are linear, the prior is data-

independent (except it scales with the variance of the data). The value of the data enters only 

when the relationships are non-linear. Given enough experience with a particular class of 



problems, I imagine that it would be possible to choose   
   

 a priori, in which case it could be 

understood as a prior covariance of the model. 

In general, the covariance   
   

 is not known, and must be estimated on-the-fly.  I use a two-step 

process:  I first realize            or            with a uniform prior, estimate   
   

 from the 

realizations, and then realize it again with an area-uniform prior.  I estimate mean and covariance 

by performing the sums: 

  
   

   
                           

           
 

  

   

         

  
   

     
   

 
 

  

   

                
   

     
   

 
 
   

   
 
 

  

   

 

for all       ,            and            during the loop over the     

   realizations.  Then: 

   
   

   
   

   
   

 

    
   

      
   

   
   

   
   

    
   

  
   

    
   

   
   

    
   

     

Since I am using integer variables, I reset each diagonal element of   
   

to     if it falls below 

that threshold. 

11. A sample distribution with a configuration-uniform prior. In this example, I use    

  ,       and      , so that the full trans-dimensional model space has about         

grid nodes.  A slowness vector   with elements       consisting of the slowness evaluated at 

integer depth                is calculated for model  . Each of the       data    is a 

weighted average of      , with an averaging kernel         . I choose this kernel so that it has 

unit area and elements that exponentially decay with depth. The  ’s are ordered so that the decay 

rate decreases with  : 



 

The true model has one low-slowness layer.  The observed data are the true data plus 

uncorrelated Normally-distributed random noise with variance   
        . 



 

I compute the           and           distributions with configuration-uniform priors. They 

are evaluated on a one-layer                     grid and a two-layer          

                       grid. Slices through them are shown below, with the top row for the 

one-layer grid and the bottom row for the two-layer grid.  The Normal, Normal-corrected and 

chi-squared likelihood functions are shown below (for a configuration uniform prior). 



 



 

 



As expected, the chi-squared likelihood function has the widest peak. 

The best-fitting one-layer (red) and two layer (cyan) models are compared to the true model 

(back) in the Part A of the figure below.  The corresponding fit to the data is shown in Part B. 

 

The uncorrected error of the best-fitting one-layer solution of   
         (with         

  ) is larger than the error of the best-fitting two-layer solution  of   
         (        

  ). Consequently, the likelihood of the best-fitting two layer model is about twice that of the 

best-fitting one layer model. This difference in error is not significant at the 95% confidence 

level under an  -test. And, indeed, the predicted data (magenta, cyan) appears to fit the observed 

data (black) equally well. When corrected for the differing number of degrees of freedom, the 

error becomes   
         and   

        . 

12. Inversion results.  I used MH to create     realizations of           and           for all 

nine combinations of likelihood functions and priors.  MH does a good job reconstructing all the 

distributions.  However, the approximation involving covariance that is used to estimate       

can be off by as much as 20%, so the area-uniform prior can be off by a similar amount. 

 Histograms of three sets of slowness profiles are shown below: 



 

As expected, the chi-squared distributions tend to be wider, reflecting the wider likelihood 

function. The percentage of 1-layer models is given below: 

 Normal Normal-corrected chi-squared 

configuration-uniform 0.23% 0.27% 0.29% 

layer-uniform 52.5% 49.1% 51.7% 

area-uniform 66.9% 60.35% 58.7% 

 

As expected, the configuration-uniform priors lead to a set of realizations that contain very few 

instances of 1-layer models. 

None of the other six combinations gives a really high probability to 1-layer models (even 

though the true model has one layer), though the area-uniform prior does best, with probabilities 

of       .  I think that this behavior is due to the larger-dimension models containing the 

lower-dimensional ones.  I think that it caused probability to be distributed evenly between 

dimensions equal to or greater than the true dimension.  This should be an area of future 

research. 

  



% state X, the trans-dimensional model structure: 
% X.Nlayers: number of layers 

% X.thickness: vector of layer thicknesses 

% X.slowness: vector of layer and halfspace slownesses 

 

function [ d, b, bc ] = Xtod( X, Klayers, Kthicknesses ) 

% converts state X to slowness vector d 

% input: 

% X: state 

% Klayers: maximum number of layers 

% Kthicknesses: maximum thickness 

% output: 

% d: vector of slownesses, s(z) 

% b: vectors of 0's and 1's, with 1's at boundaries 

% bc: vector of 0's and +/-1's, with 1's at boundaries with 

%     positive slowness jump, -1's at boundaries with negative 

%     jump 

threshold = 5; 

Nd = (Klayers+1)*Kthicknesses; 

Nlayers = X.Nlayers; 

d = []; 

b = []; 

bc = []; 

for i=[1:Nlayers] 

    d = [d; X.slowness(i)*ones(X.thickness(i),1) ]; 

    Ds = abs(X.slowness(i+1)-X.slowness(i)); 

    b = [b; zeros(X.thickness(i)-1,1); 1 ]; 

    bc = [b; zeros(X.thickness(i)-1,1); sign(Ds) ]; 

end 

i = Nd-length(d); 

d = [d; X.slowness(Nlayers+1)*ones(i,1) ]; 

i = Nd-length(b); 

b = [b; zeros(i,1) ]; 

i = Nd-length(bc); 

bc = [bc; zeros(i,1) ]; 

  

end 

  



function [ P ] = makeP( p, L ) 

% input 

% p 

% KxK matrix that gives p(i;j), 1<=i<=K, 1<=j<=K 

% the probability of i for case j 

% (typically, when the maximum is at j) 

% L 

% an integer parameter L>>K that will be used 

% to create realizations of p(i;j) 

% output 

% P.K 

% the value of K 

% P.L 

% the value of L 

% P.p 

% a modified version of p(i;j), in which 

% L*P.p(i;j) is exactly and integer in the 

% range 1-L. 

% P.logp 

% log of P.p 

% P.r 

% a L by K table such that P.r(:,j), 

% with 1<=j<=K, is an array of length L that has exactly L*P.p(i;j) 

% occurences of each integer in the range 1<=j<=K. A realization 

% of p for case j is then 

% i_realization = P.r(unidrnd(L),j) 

  

[K, i] = size(p); 

P.K = K; 

P.L = L; 

  

for j=[1:K] 

    pa = p(:,j); 

    sump = sum(pa); 

    pd = ceil(L*pa/sump); 

    sumpd = sum(pd); 

    % insure has exactly 100 area 

    while( sumpd>L ) % if area is too big, reduce it 

        i = unidrnd(K); 

        if( pd(i) == 1 ) 

            continue; 

        end 

        pd(i) = pd(i)-1; 

        sumpd = sum(pd); 

    end 

    while( sumpd<L ) % if area is too small, increase it 

        i = unidrnd(K); 

        pd(i) = pd(i)+1; 

        sumpd = sum(pd); 

    end 

    pa = pd/sumpd; 

    jl=1; 

    r = zeros(L,1); 

    for i=[1:K] 

        jr=jl+pd(i)-1; 

        r(jl:jr)=i; 

        jl=jr+1; 



    end 

    P.p(:,j)=pa; 

    P.r(:,j)=r; 

end 

  

P.logp=log(P.p); 

  

end 

 

  



 

function [ X0 ] = refstate( X1, N, H, S, Nlayers ) 

  

% create the reference state X0 which has the same number 

% of layers as the new state, with other attributes chosen 

% to be close to the original state.  This section chooses 

% some critical parameters deterministically based on the 

% values of the slownesses in X1, but pseudo-randomly. 

% output: 

% X0: reference state 

% input: 

% X1: ols state 

% N: probability structure for number of layers 

% H: probability structure for layer thicnnesses 

% S: probability structure for layer slownesses 

% Nlayers: number of layers in reference state 

  

% table of primes; must be at least of length N.K 

p = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 

71]'; 

if( length(p)<N.K ) 

    fprintf('Error: table of primes too short\n'); 

    xxx 

end 

  

if( X1.Nlayers == Nlayers ) % no change in dimension 

    % reference state is old state 

    X0 = X1; 

    cs = 1; 

elseif( X1.Nlayers > Nlayers ) % dimension goes down 

    % aggregate a pseudo-randomly chosen pair of adjacent layers 

    X0 = X1; 

    while ( X0.Nlayers > Nlayers ) 

        t = X0.thickness; 

        s = X0.slowness; 

        N0 = X0.Nlayers; 

        n1 = mod(sum(p(1:N0).*s(1:N0)),N0-1)+1; % pick pseudo-random layer 

        tt=t(n1)+t(n1+1); % aggregated thickness 

        if( tt>H.K ) % don't let aggregated thickness exceed limit 

            tt = H.K; 

        end 

        % weighted average of the slownesses 

        sw = t(n1)*s(n1)+t(n1+1)*s(n1+1); 

        sw = floor(sw/tt); 

        if( sw<1 ) % don't let average stray out of allowed range 

            sw=1; 

        elseif( sw>S.K ) 

            sw = S.K; 

        end 

        t2 = [ t(1:n1-1); tt; t(n1+2:X0.Nlayers) ]; 

        s2 = [ t(1:n1-1); sw; s(n1+2:X0.Nlayers+1) ]; 

        X0.thickness = t2; 

        X0.slowness = s2; 

        X0.Nlayers = X0.Nlayers-1; 

    end 



    cs = 2; 

else 

    % dimension goes up, split a pseudo-randomly chosen layer 

    % a a pseudo-randomly chosen place point 

     

    X0 = X1; 

    while ( X0.Nlayers < Nlayers ) 

        t = X0.thickness; 

        s = X0.slowness; 

        N0 = X0.Nlayers; 

        n1 = mod(sum(p(1:N0).*s(1:N0)),N0)+1; % pick pseudo-random layer 

        n2 = t(n1); % thickness of layer 

        if( n2 == 1 ) 

            ta=1; 

            tb=1; 

        else 

            ta = mod(sum(p(2:N0+1).*s(1:N0)),n2-1)+1; % pick pseudo-random 

subdivision 

            if( ta<1 ) 

                ta=1; 

            end 

            tb = n2-ta; 

            if( tb<1 ) 

                tb=1; 

            end 

        end 

        t2 = [ t(1:n1-1); ta; tb; t(n1+1:N0) ]; 

        s2 = [ s(1:n1-1); s(n1); s(n1); s(n1+1:N0+1) ]; 

        X0.thickness = t2; 

        X0.slowness = s2; 

        X0.Nlayers = X0.Nlayers+1; 

    end 

    cs=3; 

end 

  

if( 0 ) % for debugging purposes, check consistency of X0 

    if( length(X0.thickness) ~= X0.Nlayers ) 

        fprintf('Error: thickness length mismatch, case %d\n', cs ); 

        xxx; 

    end  

    for i=[1:X0.Nlayers] 

        j = X0.thickness(i); 

        if( (j<1) || (j>X0.Kthicknesses)  ) 

            fprintf('Error: thickness bounds, case %d layer %d value %d\n', 

cs, i, j ); 

            xxx; 

        end 

    end 

    if( length(X0.slowness) ~= (X0.Nlayers+1) ) 

         fprintf('Error: slowness length mismatch, case %d\n', cs ); 

         xxx; 

    end 

    for i=[1:(X0.Nlayers+1)] 

        j = X0.slowness(i); 

        if( (j<1) || (j>X0.Kslownesses)  ) 

            fprintf('Error: slowness bounds, case %d layer %d value %d\n', 

cs, i, j ); 



            xxx; 

        end 

    end 

end 

  

end 

 

  



 

function [X2] = randomstate( X1, N, H, S ) 

% make a random state X2 that is "close to" X1 

  

% start another random state close to the first one, but with 

% a possibly different number of layers 

X2.Klayers = X1.Klayers; 

X2.Kthicknesses = X1.Kthicknesses; 

X2.Kslownesses = X1.Kslownesses; 

X2.Nlayers = N.r(unidrnd(N.L),X1.Nlayers); 

  

% make the refernence state with this number of layers 

X0 = refstate( X1, N, H, S, X2.Nlayers ); 

  

% random generation of the new state based on the reference state 

X2.thickness = zeros( X2.Nlayers, 1 ); 

for i=[1:X2.Nlayers] 

    X2.thickness(i) = H.r(unidrnd(H.L),X0.thickness(i)); 

end 

X2.slowness = zeros( X2.Nlayers, 1 ); 

for i=[1:X2.Nlayers+1] 

        X2.slowness(i) = S.r(unidrnd(H.L),X0.slowness(i)); 

end 

  

end 

 

  



function [ logP, d, b, bc ] = logPE2ofd( X, Klayers, Kthicknesses ) 

% log likelihood logP of a state X, by lookup into PE2 structure 

% input: 

% X: the state 

% Klayers: maximum number of layers 

% Kthicknesses: maximum number of thicknesses 

% output: 

% logP: log likelihood 

% d: slowness vector 

% b: interface vector, with 1's at interfaces 

% bc: interface vector, with +/- 1's at interfaces, 

%                       depending upon the sign of the jump 

 

global PE2 

  

% transform state to data 

[d,b,bc]=Xtod(X,Klayers,Kthicknesses); 

  

if( X.Nlayers == 1 ) 

    H1 = X.thickness(1); 

    s1 = X.slowness(1); 

    s2 = X.slowness(2); 

    logP = PE2.logP1(H1,s1,s2); 

else 

    H1 = X.thickness(1); 

    H2 = X.thickness(2); 

    s1 = X.slowness(1); 

    s2 = X.slowness(2); 

    s3 = X.slowness(3); 

    logP = PE2.logP2(H1,H2,s1,s2,s3); 

end 

  

end 

  



function [ logp ] = logcondprob( X2, X1, N, H, S ) 

% input: 

% X2: state 2 

% X1: state 1 

% N: layer probability structure 

% H: thickness probability structure 

% S: slowness probability structure 

% output 

% logp: log probability of state X2, given state X1 

  

% probability associated with layers 

logp = N.logp( X2.Nlayers, X1.Nlayers ); 

  

% reference state corresponding to X1 

X0 = refstate( X1, N, H, S, X2.Nlayers ); 

  

% probability associated with thicknesses 

for i=[1:X0.Nlayers] 

    logp = logp + H.logp( X2.thickness(i), X0.thickness(i) ); 

end 

  

% probability associated with slownesses 

for i=[1:(X0.Nlayers+1)] 

    logp = logp + S.logp( X2.slowness(i), X0.slowness(i) ); 

end 

  

end 

 

  



 

 
% makePEK_G G for Gaussian, no correction for degrees of freedom 

  

clear all; 

  

load('mydata.mat');  % use the same realization of data 

  

% set up for 2 layers 

Nlayers=2; 

PE2.Nlayers = Nlayers; 

K = 20; 

PE2.K = K; 

Nd = (Nlayers+1)*K; 

PE2.Nd = Nd; 

  

% exponentially-decaying kernel G, such that d=Gs with s computed from X 

k = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/16, 1/25, 1/32, 1/40, 1/64, 

1/80, 1/128]'; 

NG = length(k); 

G = zeros( NG, Nd ); 

for i=[1:NG] 

    g = exp(-k(i)*[1:Nd]); 

    g = g/sum(g); 

    G(i,:) = g; 

end 

  

% degrees of freedom 

nu = zeros(Nlayers,1); 

for i=[1:Nlayers] 

    nu(i) = NG-(2*i+1); 

end 

  

PE2.NG = NG; 

PE2.k = k; 

PE.G = G; 

  

sd=0.4; 

PE2.sd = sd; 

  

Htrue = [7, 7]'; 

strue = [5, 5, 15]'; 

dtrue = []; 

for i=[1: Nlayers] 

   dtrue = [dtrue; strue(i)*ones(Htrue(i),1) ]; 

end 

i = Nd-length(dtrue); 

dtrue = [dtrue; strue(Nlayers+1)*ones(i,1) ]; 

PE2.dtrue = dtrue; 

Dtrue = G*dtrue; 

PE2.Dtrue = Dtrue; 

% Dobs = Dtrue + random('Normal',0,sd,NG,1); 

PE2.Dobs = Dobs; 

  

figure(10); 

clf; 

  



% plot model 

subplot(2,1,1); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('z'); 

ylabel('s(z)'); 

axis( [1, Nd, 0, K+5] ); 

plot( [1:Nd]', dtrue, 'k-', 'LineWidth', 3 ); 

  

% plot slowness 

subplot(2,1,2); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('z'); 

ylabel('d(z)'); 

axis( [1, NG, 1, 15] ); 

plot( [1:NG]', Dobs, 'b-', 'LineWidth', 2 ); 

plot( [1:NG]', Dtrue, 'k-', 'LineWidth', 3 ); 

  

E2 = zeros(K,K,K,K,K); 

P2 = zeros(K,K,K,K,K); 

logP2 = zeros(K,K,K,K,K); 

Nlayers2=2; 

first=1; 

for Hi=[1:K] 

for Hj=[1:K] 

    Hpre = [Hi, Hj]'; 

for si=[1:K] 

for sj=[1:K] 

for sk=[1:K] 

    spre = [si,sj,sk]'; 

    

    dpre = []; 

    for i=[1:Nlayers2] 

       dpre = [dpre; spre(i)*ones(Hpre(i),1) ]; 

    end 

    i = Nd-length(dpre); 

    dpre = [dpre; spre(Nlayers2+1)*ones(i,1) ]; 

    Dpre = G*dpre; 

    e = (Dobs - Dpre)/sd; 

    myE = e'*e; 

    E2(Hi, Hj, si, sj, sk) = myE; 

    logP2(Hi, Hj, si, sj, sk) = -myE/2; 

     

    if( first==1 ) 

        Himin2=1; Hjmin2=1; simin2=1; sjmin2=1; skmin2=1; 

        dmin2 = dpre; 

        Dmin2 = Dpre; 

        Emin2 = myE; 

        first=0; 

    elseif( myE<Emin2 ) 

        Himin2=Hi; Hjmin2=Hj; simin2=si; sjmin2=sj; skmin2=sk; 

        dmin2 = dpre; 

        Dmin2 = Dpre; 

        Emin2 = myE; 



    end 

     

    if( (Hi==Htrue(1)) && (Hj==Htrue(2)) && (si==strue(1)) && (sj==strue(2)) 

&& (sk==strue(3)) ) 

        figure(10); 

        subplot(2,1,1); 

        plot( [1:Nd]', dpre, 'r:', 'LineWidth', 2 ); 

        subplot(2,1,2); 

        plot( [1:NG]', Dpre, 'r:', 'LineWidth', 2 ); 

    end 

end 

end 

end 

end 

end 

  

P2 = exp(logP2); 

  

figure(10); 

subplot(2,1,1); 

plot( [1:Nd]', dmin2, 'c:', 'LineWidth', 2 ); 

subplot(2,1,2); 

plot( [1:NG]', Dmin2, 'c:', 'LineWidth', 2 ); 

  

Nlayers1 = 1; 

E1 = zeros(K,K,K); 

P1 = zeros(K,K,K); 

first=1; 

for Hi=[1:K] 

    Hpre = [Hi]'; 

for si=[1:K] 

for sj=[1:K] 

    spre = [si,sj]'; 

    dpre = []; 

    for i=[1:Nlayers1] 

       dpre = [dpre; spre(i)*ones(Hpre(i),1) ]; 

    end 

    i = Nd-length(dpre); 

    dpre = [dpre; spre(Nlayers1+1)*ones(i,1) ]; 

    Dpre = G*dpre; 

    e = (Dobs - Dpre)/sd; 

    myE = e'*e; 

    E1(Hi, si, sj) = myE; 

    logP1(Hi, si, sj) = -myE/2; 

     

    if( first==1 ) 

        Himin1=1; simin1=1; sjmin1=1; 

        dmin1 = dpre; 

        Dmin1 = Dpre; 

        Emin1 = myE; 

        first=0; 

    elseif( myE<Emin1 ) 

        Himin1=Hi; simin1=si; sjmin1=sj; 

        dmin1 = dpre; 

        Dmin1 = Dpre; 

        Emin1 = myE; 

    end 



     

    if( (Hi==(Htrue(1)+Htrue(2))) && (si==floor((strue(1)+strue(2))/2)) && 

(sj==strue(3)) ) 

        figure(10); 

        subplot(2,1,1); 

        plot( [1:Nd]', dpre, 'g:', 'LineWidth', 2 ); 

        subplot(2,1,2); 

        plot( [1:NG]', Dpre, 'g:', 'LineWidth', 2 ); 

    end 

end 

end 

end 

  

P1 = exp(logP1); 

  

figure(10); 

subplot(2,1,1); 

plot( [1:Nd]', dmin1, 'm:', 'LineWidth', 2 ); 

subplot(2,1,2); 

plot( [1:NG]', Dmin1, 'm:', 'LineWidth', 2 ); 

  

TP1 = sum(P1(:)); 

TP2 = sum(P2(:)); 

TP = TP1 + TP2; 

P1 = P1/TP; 

P2 = P2/TP; 

  

PE2.E1 = E1; 

PE2.E2 = E2; 

PE2.P1 = P1; 

PE2.P2 = P2; 

PE2.logP1 = log(P1); 

PE2.logP2 = log(P2); 

  

minE1 = min(E1(:)); 

minE2 = min(E2(:)); 

maxP1 = max(P1(:)); 

maxP2 = max(P2(:)); 

vol1=length(find(P1(:)>(0.1*maxP1))); 

vol2=length(find(P2(:)>(0.1*maxP2))); 

TP1 = sum(P1(:)); 

TP2 = sum(P2(:)); 

TP = TP1 + TP2; 

fprintf('Gaussian\n\n'); 

fprintf('Degrees of freedom %d %d \n', nu(1), nu(2)); 

fprintf('Minimum Error %f %f\n', minE1, minE2 ); 

fprintf('Minimum Error over nu %f %f\n', minE1/nu(1), minE2/nu(2) ); 

fprintf('Total probability %f %f %f\n', TP1, TP2, TP1+TP2 ); 

fprintf('Maximum Probability %f %f\n', maxP1, maxP2 ); 

fprintf('Volume %d %d\n', vol1, vol2 ); 

fprintf('Total probability normalized by volume %f %f \n', TP1/vol1, 

TP2/vol2); 

  

figure(11); 

clf; 

colormap('jet'); 

subplot( 3, 3, 1 ); 



imagesc( squeeze(P1(Himin1,:,:)) ); 

ylabel('s1'); 

xlabel('s2'); 

subplot( 3, 3, 2 ); 

imagesc( squeeze(P1(:,:,sjmin1)) ); 

ylabel('H1'); 

xlabel('s1'); 

subplot( 3, 3, 3 ); 

imagesc( squeeze(P1(:,simin1,:)) ); 

ylabel('H1'); 

xlabel('s2'); 

  

subplot( 3, 3, 4 ); 

imagesc( squeeze(P2(:,:,simin2,sjmin2,skmin2)) ); 

ylabel('H1'); 

xlabel('H2'); 

subplot( 3, 3, 5 ); 

imagesc( squeeze(P2(Himin2,Hjmin2,:,:,skmin2)) ); 

ylabel('s1'); 

xlabel('s2'); 

subplot( 3, 3, 6 ); 

imagesc( squeeze(P2(Himin2,Hjmin2,simin2,:,:)) ); 

ylabel('s2'); 

xlabel('s3'); 

  

PE2.Himin1=Himin1; 

PE2.simin1=simin1; 

PE2.sjmin1=sjmin1; 

  

PE2.Himin2=Himin2; 

PE2.Hjmin2=Hjmin2; 

PE2.simin2=simin2; 

PE2.sjmin2=sjmin2; 

PE2.skmin2=skmin2; 

  

save('PE2K_G.mat','PE2'); 

 

  



% MH_G_SU, Metropolis-Hastings, Gaussian Likelihood, Layer-Uniform Prior 

% Note: adds covariance to output  

clear all; 

  

global PE2 

  

load('PE2K_G.mat'); 

  

Klayers = 2; 

Llayers = 10*Klayers; 

  

Kthicknesses = 20; 

Lthicknesses = 10*Kthicknesses; 

sthicknesses = 2; 

  

Kslownesses = 20; 

Lslownesses = 10*Kthicknesses; 

sslownesses = 2; 

  

% define observed data 

Nd = PE2.Nd; 

dtrue = PE2.dtrue; 

  

PAnorm = 0; 

for i=[1:Klayers] 

    configs = (Kthicknesses^i)*(Kslownesses^(i+1)); 

    PAnorm=PAnorm+1/configs; 

end 

logPA = zeros(Klayers,1); 

for i=[1:Klayers] 

    logPA(i)= -i*log(Kthicknesses)-(i+1)*log(Kslownesses)-log(PAnorm); 

end 

  

% probability N(i;j) 

% probability of of i layers given j layers 

% based on a Normal distributon with mean j and standard deviation s 

K=Klayers;  % maximum number of layers 

L=Llayers; % used in realization method 

p = [0.75, 0.25; 0.25, 0.75]; 

N = makeP( p, L ); 

% gda_draw(N.p,'caption L'); 

  

% probability H(i;j) 

% probability of of thickness i given thickness j 

% based on a Normal distributon with mean j and standard deviation s 

K=Kthicknesses;  % maximum number of layers 

L=Lthicknesses; % used in realization method 

i = [1:K]'; % all possible means 

s = sthicknesses; % standard deviation; 

p = zeros(K,K); 

for j=[1:K] 

    pa = exp(-(i-j).^2/(2*s*s))/(sqrt(2*pi)*s);  % normal distributon 

centered at m0 

    p(:,j)=pa; 

end 

H = makeP( p, L ); 

% gda_draw(H.p,'caption H'); 



  

% probability S(i:j) 

% probability of of slowness i given slowness j 

% based on a Normal distributon with mean j and standard deviation s 

K=Kthicknesses;  % maximum number of layers 

L=Lthicknesses; % used in realization method 

i = [1:K]'; % all possible means 

s = sslownesses; % standard deviation; 

p = zeros(K,K); 

for j=[1:K] 

    pa = exp(-(i-j).^2/(2*s*s))/(sqrt(2*pi)*s);  % normal distributon 

centered at m0 

    p(:,j)=pa; 

end 

S = makeP( p, L ); 

% gda_draw(V.p,'caption V'); 

  

% make a random starting state 

X1.Klayers = Klayers; 

X1.Kthicknesses = Kthicknesses; 

X1.Kslownesses = Kslownesses; 

X1.Nlayers = N.r(unidrnd(N.L),floor(Klayers/2)); 

X1.thickness = zeros( X1.Nlayers, 1 ); 

for i=[1:X1.Nlayers] 

    X1.thickness(i) = H.r(unidrnd(H.L),floor(Kthicknesses/2)); 

end 

X1.slowness = zeros( X1.Nlayers + 1, 1 ); 

for i=[1:(X1.Nlayers+1)] 

    X1.slowness(i) = H.r(unidrnd(S.L),floor(Kslownesses/2)); 

end 

  

% for summary statistics 

dsum  = zeros(Nd,1); 

dsum2 = zeros(Nd,1); 

bsum  = zeros(Nd,1); 

bcsum  = zeros(Nd,1); 

  

msum1 = zeros(3,1); 

msum2 = zeros(5,1); 

msum1sq = zeros(3,1); 

msum2sq = zeros(5,1); 

mprod1 = zeros(3,3); 

mprod2 = zeros(5,5); 

count1 = zeros(3,1); 

count2 = zeros(5,1); 

  

Hist1 = zeros(K,K,K); 

Hist2 = zeros(K,K,K,K,K); 

dimage = zeros( Kslownesses, Nd ); 

  

% Standard Metropolis-Hastings. 

Nr = 10000000; 

Nadopts = 0; 

Hlayers = zeros(Klayers,1); 

logp1max = (-1e6)*ones(Klayers,1); 

  

for i=[1:Nr] 



    % X1 is the current state; X2 is the successor state 

     

    oldN = X1.Nlayers; 

     

    % part 1, involving target distribution 

    % A1 = p_successor/p_ccurrent; 

    X2 = randomstate( X1, N, H, S ); 

     

    % the target distribution is the product of 

    %    a Normal distribution in the Error with variance vard 

    %    a truncated geometric distribution in the number of layers 

    %       with success parameter v (this is the prior information) 

  

    [logp1, d1, b1, bc1] = logPE2ofd( X1, Klayers, Kthicknesses ); 

    [logp2, d2, b2, bc2] = logPE2ofd( X2, Klayers, Kthicknesses ); 

    logA1 = logp2 - logp1; % no prior + logPA(X2.Nlayers) - 

logPA(X1.Nlayers); 

     

    % part 2 involving perturbing distribution 

    % A2 = p_current_given_successor / p_successor_given_current; 

    logpx1x2 = logcondprob( X1, X2, N, H, S ); 

    logpx2x1 = logcondprob( X2, X1, N, H, S ); 

    logA2 = logpx1x2 - logpx2x1; 

     

    % total test parameter 

    logA = logA1 + logA2; 

    A = exp(logA); 

     

    % MH test for adopting the successor 

    adopt = 0; 

    if( A>=1 ) 

        adopt=1; 

    else 

        Ap = random('uniform',0,1,1,1); 

        if( A>Ap ) 

            adopt=1; 

        end 

    end 

    if( adopt ) 

        X1 = X2; 

        d1 = d2; 

        b1 = b2; 

        bc1 = bc2; 

        logp1 = logp2; 

        Nadopts = Nadopts+1; 

    else 

        % X1 = X1 

        ; 

    end 

     

    % Z(i) = X1; 

     

    % collect summary statistics 

    dsum = dsum+d1; 

    dsum2 = dsum2+(d1.^2); 

    bsum = bsum+b1; 

    bcsum = bcsum+bc1; 



    Hlayers(X1.Nlayers) = Hlayers(X1.Nlayers)+1; 

     

    if( X1.Nlayers == 1) 

        H1=X1.thickness(1); 

        s1=X1.slowness(1); 

        s2=X1.slowness(2); 

         

        Hist1( H1, s1, s2 ) = Hist1(H1, s1, s2)+1; 

        count1(1)=count1(1)+1; msum1(1) = msum1(1) + H1; msum1sq(1) = 

msum1sq(1) + H1^2; 

        count1(2)=count1(2)+1; msum1(2) = msum1(2) + s1; msum1sq(2) = 

msum1sq(2) + s1^2; 

        count1(3)=count1(3)+1; msum1(3) = msum1(3) + s2; msum1sq(3) = 

msum1sq(3) + s2^2; 

  

        mym = [H1, s1, s2]; 

        for iii = [1:3] 

        for jjj = [1:3] 

            mprod1(iii,jjj) = mprod1(iii,jjj) + mym(iii)*mym(jjj); 

        end 

        end 

         

        if( logp1 > logp1max(1) ) 

            logp1max(1) = logp1; 

        end 

         

    else 

        H1=X1.thickness(1); 

        H2=X1.thickness(2); 

        s1=X1.slowness(1); 

        s2=X1.slowness(2); 

        s3=X1.slowness(3); 

        Hist2(H1, H2, s1, s2, s3) = Hist2(H1, H2, s1, s2, s3)+1; 

        count2(1)=count2(1)+1; msum2(1) = msum2(1) + H1; msum2sq(1) = 

msum2sq(1) + H1^2; 

        count2(2)=count2(2)+1; msum2(2) = msum2(2) + H2; msum2sq(2) = 

msum2sq(2) + H2^2; 

        count2(3)=count2(3)+1; msum2(3) = msum2(3) + s1; msum2sq(3) = 

msum2sq(3) + s1^2; 

        count2(4)=count2(4)+1; msum2(4) = msum2(4) + s2; msum2sq(4) = 

msum2sq(4) + s2^2; 

        count2(5)=count2(5)+1; msum2(5) = msum2(5) + s3; msum2sq(5) = 

msum2sq(5) + s3^2; 

         

        mym = [H1, H2, s1, s2, s3]; 

        for iii = [1:5] 

        for jjj = [1:5] 

            mprod2(iii,jjj) = mprod2(iii,jjj) + mym(iii)*mym(jjj); 

        end 

        end 

         

        if( logp1 > logp1max(2) ) 

            logp1max(2) = logp1; 

        end 

    end 

     

    for i=[1:Nd] 



        dimage( d1(i), i ) = dimage( d1(i), i )+1; 

    end 

    

end 

  

mean1 = msum1./count1; 

mstd1 = sqrt( (count1 .* msum1sq - (msum1.^2)) ./ (count1.*(count1-1)) ); 

mean2 = msum2./count2; 

mstd2 = sqrt( (count2 .* msum2sq - (msum2.^2)) ./ (count2.*(count2-1)) ); 

  

Cm1 = zeros(3,3); 

for iii = [1:3] 

for jjj = [1:3] 

     Cm1(iii,jjj) = (mprod1(iii,jjj)-msum1(iii)*mean1(jjj)-

mean1(iii)*msum1(jjj)+count1(1)*mean1(iii)*mean1(jjj))/(count1(1)-1); 

end 

end 

  

Cm2 = zeros(5,5); 

for iii = [1:5] 

for jjj = [1:5] 

     Cm2(iii,jjj) = (mprod2(iii,jjj)-msum2(iii)*mean2(jjj)-

mean2(iii)*msum2(jjj)+count2(1)*mean2(iii)*mean2(jjj))/(count2(1)-1); 

end 

end 

  

fprintf('Gaussian State Uniform Nadopts %d Hlayer1 %d Nr %d\n', Nadopts, 

Hlayers(1), Nr ); 

  

dmean = dsum/Nr; 

dvar = dsum2/Nr - dmean.^2; 

dstd = sqrt( dvar ); 

bmean = bsum/Nr; 

bcmean = bcsum/Nr; 

Hlayers = Hlayers/sum(Hlayers); 

  

% don't let std dev get small than half a grid node 

Dm = 1; 

Dm2 = (Dm/2)^2; 

Cm1c = Cm1 - diag(diag(Cm1)) + diag(diag(Cm1).*(diag(Cm1)>=Dm2)) + 

diag(Dm2*(diag(Cm1)<Dm2)); 

Cm2c = Cm2 - diag(diag(Cm2)) + diag(diag(Cm2).*(diag(Cm2)>=Dm2)) + 

diag(Dm2*(diag(Cm2)<Dm2)); 

  

% area calculation 

A = zeros(Klayers,1); 

detC = [det(Cm1c), det(Cm2c)]; 

for i=[1:Klayers] 

    j=2*i+1; 

    A(i) = ((2*pi)^(j/2))*sqrt(detC(i)); 

end 

  

PE2.mean1 = mean1; 

PE2.mstd1 = mstd1; 

PE2.Cm1 = Cm1; 

PE2.mean2 = mean2; 

PE2.mstd2 = mstd2; 



PE2.Cm2 = Cm2; 

PE2.dmean = dmean; 

PE2.bmean = bmean; 

PE2.bcmean = bcmean; 

PE2.Hlayers = Hlayers; 

PE2.Nr = Nr; 

PE2.logp1max = logp1max; 

PE2.Dm2 = Dm2; 

PE2.Cm1c = Cm1c; 

PE2.Cm2c = Cm2c; 

PE2.A = A; 

  

% prior 

PA = [ 1/A(1), 1/A(2)]' / ( 1/A(1) + 1/A(2) ); 

PE2.PA = PA; 

PE2.logPA = log(PA); 

  

% plot 

figure(1); 

clf; 

subplot(3,1,1); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('z'); 

ylabel('s(z)'); 

plot( [1:Nd]', dtrue, 'r-', 'LineWidth', 3 ); 

plot( [1:Nd]', dmean+dstd, 'k:', 'LineWidth', 2 ); 

plot( [1:Nd]', dmean, 'k-', 'LineWidth', 2 ); 

plot( [1:Nd]', dmean-dstd, 'k:', 'LineWidth', 2 ); 

subplot(3,1,2); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('z'); 

ylabel('P(b)'); 

plot( [1:Nd]', bmean, 'k-', 'LineWidth', 2 ); 

subplot(3,1,3); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('z'); 

ylabel('P(b signed)'); 

plot( [1:Nd]', bcmean, 'k-', 'LineWidth', 2 ); 

  

figure(2); 

clf; 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

xlabel('layers'); 

ylabel('P(layers)'); 

plot( [1:Klayers]', Hlayers, 'k-', 'LineWidth', 3 ); 

  

figure(3); 

clf; 

colormap('jet'); 



subplot( 3, 3, 1 ); 

imagesc( squeeze(Hist1(PE2.Himin1,:,:)) ); 

ylabel('s1'); 

xlabel('s2'); 

subplot( 3, 3, 2 ); 

imagesc( squeeze(Hist1(:,:,PE2.sjmin1)) ); 

ylabel('H1'); 

xlabel('s1'); 

subplot( 3, 3, 3 ); 

imagesc( squeeze(Hist1(:,PE2.simin1,:)) ); 

ylabel('H1'); 

xlabel('s2'); 

  

subplot( 3, 3, 4 ); 

imagesc( squeeze(Hist2(:,:,PE2.simin2,PE2.sjmin2,PE2.skmin2)) ); 

ylabel('H1'); 

xlabel('H2'); 

subplot( 3, 3, 5 ); 

imagesc( squeeze(Hist2(PE2.Himin2,PE2.Hjmin2,:,:,PE2.skmin2)) ); 

ylabel('s1'); 

xlabel('s2'); 

subplot( 3, 3, 6 ); 

imagesc( squeeze(Hist2(PE2.Himin2,PE2.Hjmin2,PE2.simin2,:,:)) ); 

ylabel('s2'); 

xlabel('s3'); 

  

figure(4); 

clf; 

colormap('jet'); 

imagesc( dimage ); 

ylabel('s(z)'); 

xlabel('z'); 

  

save('PE2K_G_C.mat','PE2');  % C for contains covariance 

 


