
Notes on the Trans-Dimensional Metropolis-Hastings (MH) Algorithm

Bill Menke, March-April 2018

0. My Agenda. The goal of the trans-dimensional Metropolis-Hastings (MH) algorithm is to

generate a large number of realizations of a trans-dimensional probability distribution ,

where is a state variable. My goal is to work through simples examples of trans-dimensional

MH, in order to identify issues needing further research.

1. The MH test parameter. For current state and proposed successor state , the MR test

parameter is typically stated:

where is the target probability function for observed data and is the

probability function for the proposed successor state given current state . Suppose now that

the current state has dimensions and the successor state has simensions. The

equivalent statement for probability density functions of the form is:

Here is a individual state variable in the -dimensional space of . The probability functions

are just replaced by the analogous probability density functions. However, the cancellation of

volume elements is between two pairs and not between one pair of ’s and one

pair of ’s. Thus, care must be taken to ensure that the and in a pair have the

same dimension.

Note that if we used Bayes’ rule to write:

then:

and:

I note that, in the literate, one usually sees a factor of the Jacobian (with) added

to the definition of , above. I do not understand why it is needed; all the volume elements

appear to cancel out.

2. Use of Discrete Variables. In the test programs, I use a state described by a finite number of

discrete (integer) parameters, and probability functions and that describe actual

probabilities of these states. Thus, means that state occurs 1% of the time. I

don’t believe that a discrete approximation of a continuous variable poses any special problem,

since our ability to resolve the value of variables like layer thickness and slowness is so limited

by data quality.

3. Effect of Changing Dimension of Ratio of Q’s. Suppose that

 ; then all other things being equal, would be accepted 50% of the time. Now

suppose that is in a space that has one less dimension than the space of (that is)

and that the probability of the successor staying in the -dimensional space is about the same as

moving to -dimensional (because they are adjacent dimensions). If the ’s are Normal, the

number of high-probability elements in the -dimensional space scales as elements, and the

number in the -dimensional space, as elements. Thus, . The

probability of acceptance increases by a factor of . Thus, a jump to a higher dimensional space

tends to accepted, unless the decrease in probability is exceedingly low.

4. MH use of Q. The MH algorithm requires that both and be evaluated for

arbitrary values of and , and furthermore, that a proposed successor state be realized from

 for an arbitrary current state . These two requirements pose practical challenges,

which I address in the following way:

 is built up by assuming that individual state variables are uncorrelated:

Since both and are a finite number discrete variables, they can be represented by a set of

integers in the range. The function is therefore a table
 of

real values. No element of may be less than unity, else the MH test parameter may be

singular.

Since MH works for a wide range of ’s, can be merely an approximation to

Furthermore, the approximation can be chosen in a way that facilitates the processes of creating

realizations of . Suppose that , with fixed , should approximate a known

function . We choose an approximation that satisfied three conditions: ; for an

specified integer , every element of is an integer; and . This

approximation can be made arbitrary accurate by choosing a sufficiently large .

A that satisfies these three conditions is constructed in the following way: First, set

 ; Second, set and define ; Third, set ; Fourth, if

any is zero, reset it to unity; Fifth, if add/subtract unity from randomly chosen

entries until (but never decreasing below unity); and Sixth, set .

An example of a approximately Normal with a mean of about and a standard

deviation of about is:

A companion table facilitates the generation of realizations. This table is defined so

that each column has exactly occurences of the value , exactly occurences of ,

etc., with the order of the occurrences being arbitrary. Then, if ℓ is a random integer in the range

 , is approximately a realization of
 . An example of a table

corresponding to the above is:

The reconstructed by binning a set of realizations matches the true very well:

5. Generating a Proposed Successor State. I view the process of generating a proposed

successor state from a current state as consisting of three steps:

First, the dimension of the proposed successor state is generated by realizing , where

 is the dimension of the current state.

Next, a deterministic reference state is created, with dimensions but as close to the current

state as possible.

Finally, the proposed successor state is created by realizing (but with fixed

dimension).

This process is illustrated below for the case:

In the case of a layered earth model, where each layer is described by a layer thickness and layer

slowness, the reference state is defined in different ways, depending on whether the number of

layers (that is, the dimension) remains the same, increases or decreases.

Case . The reference state is the current state.

Case case. The reference state is created by pseudo-randomly choosing a pair of

layers and aggregating them, and repeating the process as many times as necessary to achieve the

necessary number of layers. Each time a pair of layers is aggregated, the slowness of the

resulting single layer is the thickness-weighted average slowness of the two original layers.

Case . the reference state is created from the current state by pseudo-randomly

choosing a layer and splitting it into two layers at a pseudo-randomly choosing a point, and

repeating the process as many times as necessary to achieve the necessary number of layers.

Each time, two pieces are assigned the same slowness as the original layer.

The pseudo-random number in the range is generated using the rule:

where is the slowness vector associated with the state and is a specified vector of prime

numbers. The pseudo-random number is a deterministic function of the state.

6. A Simple Example of a Trans-Dimensional Target Distribution. Here the state is either

one dimensional (with probability or two-dimensional (with probability . The

one dimensional distribution is unimodal in a single variable and the two-dinensional

distribution is bimodal is a pair of variables . Each is a inter in the range .

7. A Simple Test of Algorithm. MH was used to generate realizations of using the target

distribution from 6, and histograms of them were used to reconstruct . The ’s were

discrete approximation to Normal distributions, as described above. The reconstruction

distribution closely matches the true distribution, with and:

8. A More Complicated Test of the Algorithm. The test uses a model that consists of layers

over a half-space. The model has layers, each with a thickness and a slowness , and the

half-space has a slowness, so that an -layer model is represented by parameters. All

parameters are discrete and bounded, layers, layer thicknesses and

 layer and half-space slownesses. In this example, we use , and

 .

The true (or target) distribution is the product of truncated geometric distributions for

number of layers, layer thicknesses and layer and halfspace slownesses, with “success”

parameters of , and , respectively. The geometrical distribution

monotonically decays with , with the rate being controlled by the success parameter.

I chose the geometric distribution because it is a non-trivial discrete distribution that has a simple

analytic formula.

I used MH to generate realizations of the model state. I then built histograms of number of

layers, thicknesses and slowness and compared them to the geometric distribution. The match is

excellent (see Figure). Note, however, that the verification is incomplete, since I checked only

three projections of a multivariate distribution with:

dimensions. Note also that even realizations sample this high dimensional space only very

sparsely.

9. Issues associated with the over-fitting the data. A model with a larger number of

parameters tends to over-fit the data, relative to a model with a lower number of parameters. This

behavior is guaranteed to occur in trans-dimensional layered models, because a model space with

 layers contains the space of all models. It is the subspace in which two adjacent

layers have the same slowness. In fact, as is shown in the figure below, it contains many

instances of this model, since layers can be aggregated into layers in many different ways.

Thus, the error of the a best fitting higher dimensional model can never be worse than that of a

lower dimensional model, and may by slightly better, since the higher dimensional model may be

better able to fit noise.

Consider Normally-distributed observed data
 with prior variance

 , together with

corresponding predicted data

. The total error:

is approximately chi-squared distributed with degrees of freedom, where

is the number of layers.

Suppose that the probability of the data given state is , where

 is a multivariate Normal distribution in the individual errors. Supposing two states,

 and , the ratio of their likelihoods is:

This definition of is problematical in the trans-dimensional case, as is illustrated in the

following example. Suppose that , so that and and

suppose two experiments, one associated with state with error and the other

associated with state with error . These two errors are not significantly different

when judged by a chi-squared test, because both fall within one standard deviation of the mean.

One cannot rule out the Null Hypothesis that the difference in fit is due to random variation; state

 does not fit the data significantly better than state . However, the ratio of likelihoods of the

two states is . Furthermore, the ratio grows very quickly with the number of

data; for example, the comparable ratio is about when . Assuming, for the

moment, a uniform prior , so that

 , we find that is

much more probable than , even though and fit the data to similar degrees. This

seemingly contradictory result can be resolved in a case where the number of models with the

same error grows very quickly with . (This behavior occurs in classical chi-squared analysis,

where the number of models with error scales as the surface area of a -dimensional

hypersphere of radius). Then we could understand that yes, while the probability of ,

relative to that of is not very high, this is offset by the existence of many alternatives to , all

with the same error, so the probability of selecting one of them is still high. However, this

reasoning is making the assumption that the states span spaces of equal dimension, and is not

true when the states have different dimensions.

This issue is illustrated in the following ultra-simplified trans-dimensional model.

Consider uncorrelated observed data of length and a corresponding auxiliary vector

 . Now suppose a trans-dimensional model consisting of an parameter

constant model, such that
 ; and an parameter linear model

 . Note that the linear model contains the constant model as a special

case, so the error of the former can never be less than the error of the latter. The likelihood is

defined as , where
 , with and

is the variance in the data. Part A of the figure, below, shows synthetic data, realized for the

constant model with
 . Part B shows the log-likelihood for the constant (black) and

linear model spaces (red and green corresponding to two orthogonal slices through the peak of

the linear model). In this example, best-fitting constant model fits the data almost (but not quite)

as well as the linear model. Part C shows a revised version of the log-likelihood, adjusted for the

different degrees of freedom for the two model; that is, had been multiplied by .

The constant model now has the larger log-likelihood. Now suppose that the prior has been

adjusted so that the constant model and the linear model are equally likely when they have the

same log-likelihood. The fraction of constant realizations that occur in an ensemble is shown for

the uncorrected (Part D) and corrected (Part E) log-likelihood functions. In the uncorrected

case, the typical is associated with only about 40% constant models, even though the true

model is constant. The correction increases the percentage, but only to 50%. Parts F-J of the

figure show corresponding results when the true model is linear with
 .

Now linear models are favored in both cases, though not overwhelmingly so.

I consider the preceding discussion a strong argument for correcting the error for the degrees of

freedom; that is replacing with:

This change leads to no change in relative likelihood when comparing two models having same

dimension, but it offsets the tendency for a high-dimensional case to over-fit the data.

 As an alternative, we might consider writing:

where is the chi-squared distribution. The ratio of likelihoods is then:

where is the gamma function. When this version of the likelihood is used, two models that

fit the data similarly well, when judged against the chi-squared distribution, will have similar

probabilities of acceptance. One might argue that this choice of gives too much weight to

states with large error, since falls off much more slowly with than .

However, the criticism is only valid when spans the full space of the data, so that the

number of models with error grows very quickly with (as they do in classical chi-squared

analysis). In cases where the

’s are very highly correlated with one another, the ’s may

not span the whole space and the alternative assumption embodied in above definition of may

be appropriate.

 I note that the calculation of can be expedited by tabulating the values of

 , for there are only of them. I also note that is best calculated as

 and not as , for the division in the latter is very unstable at

points where .

10. Issues associated with the model-space volume and the choice of the prior distribution.

One possible choice of the prior is that every possible configuration has equal probability (the

configuration-uniform prior). A -layer model has a total of

configurations, so that the total prior probability of -layer models is:

Another possibility is to define the prior so that models of any number of layers have equal

probability (the layer-uniform prior). In this case, the prior probability of a configuration must

decrease with its number of layers:

Both priors are plausible, but they can lead to different outcomes.

First, consider the case of the configuration-uniform prior. Suppose that the best-fitting model

with layers fits the data as well as a model with layers, so that the ratio of

likelihoods is unity. Even so, the total probability

 of all models will typically be much

higher than the total probability

 of all models, because the model space for the former has

the higher number of dimensions. For example, consider a likelihood function that, for fixed

number of layers , is Gaussian:

where are the model parameters associate with , are their deviations from

the mean, and

 is a covariance matrix. At fixed , the total probability is:

 h

The ratio is, in general a strong function of covariance. Consider, for instance, the

special case

 , it is

 . Now suppose that

 and

 grid nodes. Then the ratio of total probability is about a factor of 25; that is, models with

 layers occur twenty-five times as often in a set of realizations than do models with

layers, even though both fit the data equally well.

Now consider the case of the layer-uniform prior. The ratio of total probability now includes the

ratio of priors:

Typically, the full range of model parameters are chosen to be much larger than the variance, so

the ratio of priors
 overcorrects the factor of

 , leading to a situation where

realization with layers are under-represented when compared to models with layers.

Furthermore, the results depend strongly on the choices of and , whereas we would have

preferred it to be insensitive to them, as long as they were chosen to be large enough that model

volume completely enclosed the region of high probability.

Most authors use layer-uniform priors. However, I propose using an area-uniform prior, defined

as:

The area-uniform prior corrects for the tendency of the model volume to grow with dimension,

but does not depend upon the arbitrary choice of bounds. However, it can be criticized because it

depends on the data, whereas a fully-consistent prior should not. However, the data enters only

weakly; depends exclusively on the behavior the covariance

, and that is controlled

by the mapping from state to slowness function and the functional relationship between

slowness and the predicted data

. When these two relationships are linear, the prior is data-

independent (except it scales with the variance of the data). The value of the data enters only

when the relationships are non-linear. Given enough experience with a particular class of

problems, I imagine that it would be possible to choose

 a priori, in which case it could be

understood as a prior covariance of the model.

In general, the covariance

 is not known, and must be estimated on-the-fly. I use a two-step

process: I first realize or with a uniform prior, estimate

 from the

realizations, and then realize it again with an area-uniform prior. I estimate mean and covariance

by performing the sums:

for all , and during the loop over the

 realizations. Then:

Since I am using integer variables, I reset each diagonal element of

to if it falls below

that threshold.

11. A sample distribution with a configuration-uniform prior. In this example, I use

 , and , so that the full trans-dimensional model space has about

grid nodes. A slowness vector with elements consisting of the slowness evaluated at

integer depth is calculated for model . Each of the data is a

weighted average of , with an averaging kernel . I choose this kernel so that it has

unit area and elements that exponentially decay with depth. The ’s are ordered so that the decay

rate decreases with :

The true model has one low-slowness layer. The observed data are the true data plus

uncorrelated Normally-distributed random noise with variance
 .

I compute the and distributions with configuration-uniform priors. They

are evaluated on a one-layer grid and a two-layer

 grid. Slices through them are shown below, with the top row for the

one-layer grid and the bottom row for the two-layer grid. The Normal, Normal-corrected and

chi-squared likelihood functions are shown below (for a configuration uniform prior).

As expected, the chi-squared likelihood function has the widest peak.

The best-fitting one-layer (red) and two layer (cyan) models are compared to the true model

(back) in the Part A of the figure below. The corresponding fit to the data is shown in Part B.

The uncorrected error of the best-fitting one-layer solution of
 (with

) is larger than the error of the best-fitting two-layer solution of
 (

). Consequently, the likelihood of the best-fitting two layer model is about twice that of the

best-fitting one layer model. This difference in error is not significant at the 95% confidence

level under an -test. And, indeed, the predicted data (magenta, cyan) appears to fit the observed

data (black) equally well. When corrected for the differing number of degrees of freedom, the

error becomes
 and

 .

12. Inversion results. I used MH to create realizations of and for all

nine combinations of likelihood functions and priors. MH does a good job reconstructing all the

distributions. However, the approximation involving covariance that is used to estimate

can be off by as much as 20%, so the area-uniform prior can be off by a similar amount.

 Histograms of three sets of slowness profiles are shown below:

As expected, the chi-squared distributions tend to be wider, reflecting the wider likelihood

function. The percentage of 1-layer models is given below:

 Normal Normal-corrected chi-squared

configuration-uniform 0.23% 0.27% 0.29%

layer-uniform 52.5% 49.1% 51.7%

area-uniform 66.9% 60.35% 58.7%

As expected, the configuration-uniform priors lead to a set of realizations that contain very few

instances of 1-layer models.

None of the other six combinations gives a really high probability to 1-layer models (even

though the true model has one layer), though the area-uniform prior does best, with probabilities

of . I think that this behavior is due to the larger-dimension models containing the

lower-dimensional ones. I think that it caused probability to be distributed evenly between

dimensions equal to or greater than the true dimension. This should be an area of future

research.

% state X, the trans-dimensional model structure:
% X.Nlayers: number of layers

% X.thickness: vector of layer thicknesses

% X.slowness: vector of layer and halfspace slownesses

function [d, b, bc] = Xtod(X, Klayers, Kthicknesses)

% converts state X to slowness vector d

% input:

% X: state

% Klayers: maximum number of layers

% Kthicknesses: maximum thickness

% output:

% d: vector of slownesses, s(z)

% b: vectors of 0's and 1's, with 1's at boundaries

% bc: vector of 0's and +/-1's, with 1's at boundaries with

% positive slowness jump, -1's at boundaries with negative

% jump

threshold = 5;

Nd = (Klayers+1)*Kthicknesses;

Nlayers = X.Nlayers;

d = [];

b = [];

bc = [];

for i=[1:Nlayers]

 d = [d; X.slowness(i)*ones(X.thickness(i),1)];

 Ds = abs(X.slowness(i+1)-X.slowness(i));

 b = [b; zeros(X.thickness(i)-1,1); 1];

 bc = [b; zeros(X.thickness(i)-1,1); sign(Ds)];

end

i = Nd-length(d);

d = [d; X.slowness(Nlayers+1)*ones(i,1)];

i = Nd-length(b);

b = [b; zeros(i,1)];

i = Nd-length(bc);

bc = [bc; zeros(i,1)];

end

function [P] = makeP(p, L)

% input

% p

% KxK matrix that gives p(i;j), 1<=i<=K, 1<=j<=K

% the probability of i for case j

% (typically, when the maximum is at j)

% L

% an integer parameter L>>K that will be used

% to create realizations of p(i;j)

% output

% P.K

% the value of K

% P.L

% the value of L

% P.p

% a modified version of p(i;j), in which

% L*P.p(i;j) is exactly and integer in the

% range 1-L.

% P.logp

% log of P.p

% P.r

% a L by K table such that P.r(:,j),

% with 1<=j<=K, is an array of length L that has exactly L*P.p(i;j)

% occurences of each integer in the range 1<=j<=K. A realization

% of p for case j is then

% i_realization = P.r(unidrnd(L),j)

[K, i] = size(p);

P.K = K;

P.L = L;

for j=[1:K]

 pa = p(:,j);

 sump = sum(pa);

 pd = ceil(L*pa/sump);

 sumpd = sum(pd);

 % insure has exactly 100 area

 while(sumpd>L) % if area is too big, reduce it

 i = unidrnd(K);

 if(pd(i) == 1)

 continue;

 end

 pd(i) = pd(i)-1;

 sumpd = sum(pd);

 end

 while(sumpd<L) % if area is too small, increase it

 i = unidrnd(K);

 pd(i) = pd(i)+1;

 sumpd = sum(pd);

 end

 pa = pd/sumpd;

 jl=1;

 r = zeros(L,1);

 for i=[1:K]

 jr=jl+pd(i)-1;

 r(jl:jr)=i;

 jl=jr+1;

 end

 P.p(:,j)=pa;

 P.r(:,j)=r;

end

P.logp=log(P.p);

end

function [X0] = refstate(X1, N, H, S, Nlayers)

% create the reference state X0 which has the same number

% of layers as the new state, with other attributes chosen

% to be close to the original state. This section chooses

% some critical parameters deterministically based on the

% values of the slownesses in X1, but pseudo-randomly.

% output:

% X0: reference state

% input:

% X1: ols state

% N: probability structure for number of layers

% H: probability structure for layer thicnnesses

% S: probability structure for layer slownesses

% Nlayers: number of layers in reference state

% table of primes; must be at least of length N.K

p = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71]';

if(length(p)<N.K)

 fprintf('Error: table of primes too short\n');

 xxx

end

if(X1.Nlayers == Nlayers) % no change in dimension

 % reference state is old state

 X0 = X1;

 cs = 1;

elseif(X1.Nlayers > Nlayers) % dimension goes down

 % aggregate a pseudo-randomly chosen pair of adjacent layers

 X0 = X1;

 while (X0.Nlayers > Nlayers)

 t = X0.thickness;

 s = X0.slowness;

 N0 = X0.Nlayers;

 n1 = mod(sum(p(1:N0).*s(1:N0)),N0-1)+1; % pick pseudo-random layer

 tt=t(n1)+t(n1+1); % aggregated thickness

 if(tt>H.K) % don't let aggregated thickness exceed limit

 tt = H.K;

 end

 % weighted average of the slownesses

 sw = t(n1)*s(n1)+t(n1+1)*s(n1+1);

 sw = floor(sw/tt);

 if(sw<1) % don't let average stray out of allowed range

 sw=1;

 elseif(sw>S.K)

 sw = S.K;

 end

 t2 = [t(1:n1-1); tt; t(n1+2:X0.Nlayers)];

 s2 = [t(1:n1-1); sw; s(n1+2:X0.Nlayers+1)];

 X0.thickness = t2;

 X0.slowness = s2;

 X0.Nlayers = X0.Nlayers-1;

 end

 cs = 2;

else

 % dimension goes up, split a pseudo-randomly chosen layer

 % a a pseudo-randomly chosen place point

 X0 = X1;

 while (X0.Nlayers < Nlayers)

 t = X0.thickness;

 s = X0.slowness;

 N0 = X0.Nlayers;

 n1 = mod(sum(p(1:N0).*s(1:N0)),N0)+1; % pick pseudo-random layer

 n2 = t(n1); % thickness of layer

 if(n2 == 1)

 ta=1;

 tb=1;

 else

 ta = mod(sum(p(2:N0+1).*s(1:N0)),n2-1)+1; % pick pseudo-random

subdivision

 if(ta<1)

 ta=1;

 end

 tb = n2-ta;

 if(tb<1)

 tb=1;

 end

 end

 t2 = [t(1:n1-1); ta; tb; t(n1+1:N0)];

 s2 = [s(1:n1-1); s(n1); s(n1); s(n1+1:N0+1)];

 X0.thickness = t2;

 X0.slowness = s2;

 X0.Nlayers = X0.Nlayers+1;

 end

 cs=3;

end

if(0) % for debugging purposes, check consistency of X0

 if(length(X0.thickness) ~= X0.Nlayers)

 fprintf('Error: thickness length mismatch, case %d\n', cs);

 xxx;

 end

 for i=[1:X0.Nlayers]

 j = X0.thickness(i);

 if((j<1) || (j>X0.Kthicknesses))

 fprintf('Error: thickness bounds, case %d layer %d value %d\n',

cs, i, j);

 xxx;

 end

 end

 if(length(X0.slowness) ~= (X0.Nlayers+1))

 fprintf('Error: slowness length mismatch, case %d\n', cs);

 xxx;

 end

 for i=[1:(X0.Nlayers+1)]

 j = X0.slowness(i);

 if((j<1) || (j>X0.Kslownesses))

 fprintf('Error: slowness bounds, case %d layer %d value %d\n',

cs, i, j);

 xxx;

 end

 end

end

end

function [X2] = randomstate(X1, N, H, S)

% make a random state X2 that is "close to" X1

% start another random state close to the first one, but with

% a possibly different number of layers

X2.Klayers = X1.Klayers;

X2.Kthicknesses = X1.Kthicknesses;

X2.Kslownesses = X1.Kslownesses;

X2.Nlayers = N.r(unidrnd(N.L),X1.Nlayers);

% make the refernence state with this number of layers

X0 = refstate(X1, N, H, S, X2.Nlayers);

% random generation of the new state based on the reference state

X2.thickness = zeros(X2.Nlayers, 1);

for i=[1:X2.Nlayers]

 X2.thickness(i) = H.r(unidrnd(H.L),X0.thickness(i));

end

X2.slowness = zeros(X2.Nlayers, 1);

for i=[1:X2.Nlayers+1]

 X2.slowness(i) = S.r(unidrnd(H.L),X0.slowness(i));

end

end

function [logP, d, b, bc] = logPE2ofd(X, Klayers, Kthicknesses)

% log likelihood logP of a state X, by lookup into PE2 structure

% input:

% X: the state

% Klayers: maximum number of layers

% Kthicknesses: maximum number of thicknesses

% output:

% logP: log likelihood

% d: slowness vector

% b: interface vector, with 1's at interfaces

% bc: interface vector, with +/- 1's at interfaces,

% depending upon the sign of the jump

global PE2

% transform state to data

[d,b,bc]=Xtod(X,Klayers,Kthicknesses);

if(X.Nlayers == 1)

 H1 = X.thickness(1);

 s1 = X.slowness(1);

 s2 = X.slowness(2);

 logP = PE2.logP1(H1,s1,s2);

else

 H1 = X.thickness(1);

 H2 = X.thickness(2);

 s1 = X.slowness(1);

 s2 = X.slowness(2);

 s3 = X.slowness(3);

 logP = PE2.logP2(H1,H2,s1,s2,s3);

end

end

function [logp] = logcondprob(X2, X1, N, H, S)

% input:

% X2: state 2

% X1: state 1

% N: layer probability structure

% H: thickness probability structure

% S: slowness probability structure

% output

% logp: log probability of state X2, given state X1

% probability associated with layers

logp = N.logp(X2.Nlayers, X1.Nlayers);

% reference state corresponding to X1

X0 = refstate(X1, N, H, S, X2.Nlayers);

% probability associated with thicknesses

for i=[1:X0.Nlayers]

 logp = logp + H.logp(X2.thickness(i), X0.thickness(i));

end

% probability associated with slownesses

for i=[1:(X0.Nlayers+1)]

 logp = logp + S.logp(X2.slowness(i), X0.slowness(i));

end

end

% makePEK_G G for Gaussian, no correction for degrees of freedom

clear all;

load('mydata.mat'); % use the same realization of data

% set up for 2 layers

Nlayers=2;

PE2.Nlayers = Nlayers;

K = 20;

PE2.K = K;

Nd = (Nlayers+1)*K;

PE2.Nd = Nd;

% exponentially-decaying kernel G, such that d=Gs with s computed from X

k = [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/16, 1/25, 1/32, 1/40, 1/64,

1/80, 1/128]';

NG = length(k);

G = zeros(NG, Nd);

for i=[1:NG]

 g = exp(-k(i)*[1:Nd]);

 g = g/sum(g);

 G(i,:) = g;

end

% degrees of freedom

nu = zeros(Nlayers,1);

for i=[1:Nlayers]

 nu(i) = NG-(2*i+1);

end

PE2.NG = NG;

PE2.k = k;

PE.G = G;

sd=0.4;

PE2.sd = sd;

Htrue = [7, 7]';

strue = [5, 5, 15]';

dtrue = [];

for i=[1: Nlayers]

 dtrue = [dtrue; strue(i)*ones(Htrue(i),1)];

end

i = Nd-length(dtrue);

dtrue = [dtrue; strue(Nlayers+1)*ones(i,1)];

PE2.dtrue = dtrue;

Dtrue = G*dtrue;

PE2.Dtrue = Dtrue;

% Dobs = Dtrue + random('Normal',0,sd,NG,1);

PE2.Dobs = Dobs;

figure(10);

clf;

% plot model

subplot(2,1,1);

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('z');

ylabel('s(z)');

axis([1, Nd, 0, K+5]);

plot([1:Nd]', dtrue, 'k-', 'LineWidth', 3);

% plot slowness

subplot(2,1,2);

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('z');

ylabel('d(z)');

axis([1, NG, 1, 15]);

plot([1:NG]', Dobs, 'b-', 'LineWidth', 2);

plot([1:NG]', Dtrue, 'k-', 'LineWidth', 3);

E2 = zeros(K,K,K,K,K);

P2 = zeros(K,K,K,K,K);

logP2 = zeros(K,K,K,K,K);

Nlayers2=2;

first=1;

for Hi=[1:K]

for Hj=[1:K]

 Hpre = [Hi, Hj]';

for si=[1:K]

for sj=[1:K]

for sk=[1:K]

 spre = [si,sj,sk]';

 dpre = [];

 for i=[1:Nlayers2]

 dpre = [dpre; spre(i)*ones(Hpre(i),1)];

 end

 i = Nd-length(dpre);

 dpre = [dpre; spre(Nlayers2+1)*ones(i,1)];

 Dpre = G*dpre;

 e = (Dobs - Dpre)/sd;

 myE = e'*e;

 E2(Hi, Hj, si, sj, sk) = myE;

 logP2(Hi, Hj, si, sj, sk) = -myE/2;

 if(first==1)

 Himin2=1; Hjmin2=1; simin2=1; sjmin2=1; skmin2=1;

 dmin2 = dpre;

 Dmin2 = Dpre;

 Emin2 = myE;

 first=0;

 elseif(myE<Emin2)

 Himin2=Hi; Hjmin2=Hj; simin2=si; sjmin2=sj; skmin2=sk;

 dmin2 = dpre;

 Dmin2 = Dpre;

 Emin2 = myE;

 end

 if((Hi==Htrue(1)) && (Hj==Htrue(2)) && (si==strue(1)) && (sj==strue(2))

&& (sk==strue(3)))

 figure(10);

 subplot(2,1,1);

 plot([1:Nd]', dpre, 'r:', 'LineWidth', 2);

 subplot(2,1,2);

 plot([1:NG]', Dpre, 'r:', 'LineWidth', 2);

 end

end

end

end

end

end

P2 = exp(logP2);

figure(10);

subplot(2,1,1);

plot([1:Nd]', dmin2, 'c:', 'LineWidth', 2);

subplot(2,1,2);

plot([1:NG]', Dmin2, 'c:', 'LineWidth', 2);

Nlayers1 = 1;

E1 = zeros(K,K,K);

P1 = zeros(K,K,K);

first=1;

for Hi=[1:K]

 Hpre = [Hi]';

for si=[1:K]

for sj=[1:K]

 spre = [si,sj]';

 dpre = [];

 for i=[1:Nlayers1]

 dpre = [dpre; spre(i)*ones(Hpre(i),1)];

 end

 i = Nd-length(dpre);

 dpre = [dpre; spre(Nlayers1+1)*ones(i,1)];

 Dpre = G*dpre;

 e = (Dobs - Dpre)/sd;

 myE = e'*e;

 E1(Hi, si, sj) = myE;

 logP1(Hi, si, sj) = -myE/2;

 if(first==1)

 Himin1=1; simin1=1; sjmin1=1;

 dmin1 = dpre;

 Dmin1 = Dpre;

 Emin1 = myE;

 first=0;

 elseif(myE<Emin1)

 Himin1=Hi; simin1=si; sjmin1=sj;

 dmin1 = dpre;

 Dmin1 = Dpre;

 Emin1 = myE;

 end

 if((Hi==(Htrue(1)+Htrue(2))) && (si==floor((strue(1)+strue(2))/2)) &&

(sj==strue(3)))

 figure(10);

 subplot(2,1,1);

 plot([1:Nd]', dpre, 'g:', 'LineWidth', 2);

 subplot(2,1,2);

 plot([1:NG]', Dpre, 'g:', 'LineWidth', 2);

 end

end

end

end

P1 = exp(logP1);

figure(10);

subplot(2,1,1);

plot([1:Nd]', dmin1, 'm:', 'LineWidth', 2);

subplot(2,1,2);

plot([1:NG]', Dmin1, 'm:', 'LineWidth', 2);

TP1 = sum(P1(:));

TP2 = sum(P2(:));

TP = TP1 + TP2;

P1 = P1/TP;

P2 = P2/TP;

PE2.E1 = E1;

PE2.E2 = E2;

PE2.P1 = P1;

PE2.P2 = P2;

PE2.logP1 = log(P1);

PE2.logP2 = log(P2);

minE1 = min(E1(:));

minE2 = min(E2(:));

maxP1 = max(P1(:));

maxP2 = max(P2(:));

vol1=length(find(P1(:)>(0.1*maxP1)));

vol2=length(find(P2(:)>(0.1*maxP2)));

TP1 = sum(P1(:));

TP2 = sum(P2(:));

TP = TP1 + TP2;

fprintf('Gaussian\n\n');

fprintf('Degrees of freedom %d %d \n', nu(1), nu(2));

fprintf('Minimum Error %f %f\n', minE1, minE2);

fprintf('Minimum Error over nu %f %f\n', minE1/nu(1), minE2/nu(2));

fprintf('Total probability %f %f %f\n', TP1, TP2, TP1+TP2);

fprintf('Maximum Probability %f %f\n', maxP1, maxP2);

fprintf('Volume %d %d\n', vol1, vol2);

fprintf('Total probability normalized by volume %f %f \n', TP1/vol1,

TP2/vol2);

figure(11);

clf;

colormap('jet');

subplot(3, 3, 1);

imagesc(squeeze(P1(Himin1,:,:)));

ylabel('s1');

xlabel('s2');

subplot(3, 3, 2);

imagesc(squeeze(P1(:,:,sjmin1)));

ylabel('H1');

xlabel('s1');

subplot(3, 3, 3);

imagesc(squeeze(P1(:,simin1,:)));

ylabel('H1');

xlabel('s2');

subplot(3, 3, 4);

imagesc(squeeze(P2(:,:,simin2,sjmin2,skmin2)));

ylabel('H1');

xlabel('H2');

subplot(3, 3, 5);

imagesc(squeeze(P2(Himin2,Hjmin2,:,:,skmin2)));

ylabel('s1');

xlabel('s2');

subplot(3, 3, 6);

imagesc(squeeze(P2(Himin2,Hjmin2,simin2,:,:)));

ylabel('s2');

xlabel('s3');

PE2.Himin1=Himin1;

PE2.simin1=simin1;

PE2.sjmin1=sjmin1;

PE2.Himin2=Himin2;

PE2.Hjmin2=Hjmin2;

PE2.simin2=simin2;

PE2.sjmin2=sjmin2;

PE2.skmin2=skmin2;

save('PE2K_G.mat','PE2');

% MH_G_SU, Metropolis-Hastings, Gaussian Likelihood, Layer-Uniform Prior

% Note: adds covariance to output

clear all;

global PE2

load('PE2K_G.mat');

Klayers = 2;

Llayers = 10*Klayers;

Kthicknesses = 20;

Lthicknesses = 10*Kthicknesses;

sthicknesses = 2;

Kslownesses = 20;

Lslownesses = 10*Kthicknesses;

sslownesses = 2;

% define observed data

Nd = PE2.Nd;

dtrue = PE2.dtrue;

PAnorm = 0;

for i=[1:Klayers]

 configs = (Kthicknesses^i)*(Kslownesses^(i+1));

 PAnorm=PAnorm+1/configs;

end

logPA = zeros(Klayers,1);

for i=[1:Klayers]

 logPA(i)= -i*log(Kthicknesses)-(i+1)*log(Kslownesses)-log(PAnorm);

end

% probability N(i;j)

% probability of of i layers given j layers

% based on a Normal distributon with mean j and standard deviation s

K=Klayers; % maximum number of layers

L=Llayers; % used in realization method

p = [0.75, 0.25; 0.25, 0.75];

N = makeP(p, L);

% gda_draw(N.p,'caption L');

% probability H(i;j)

% probability of of thickness i given thickness j

% based on a Normal distributon with mean j and standard deviation s

K=Kthicknesses; % maximum number of layers

L=Lthicknesses; % used in realization method

i = [1:K]'; % all possible means

s = sthicknesses; % standard deviation;

p = zeros(K,K);

for j=[1:K]

 pa = exp(-(i-j).^2/(2*s*s))/(sqrt(2*pi)*s); % normal distributon

centered at m0

 p(:,j)=pa;

end

H = makeP(p, L);

% gda_draw(H.p,'caption H');

% probability S(i:j)

% probability of of slowness i given slowness j

% based on a Normal distributon with mean j and standard deviation s

K=Kthicknesses; % maximum number of layers

L=Lthicknesses; % used in realization method

i = [1:K]'; % all possible means

s = sslownesses; % standard deviation;

p = zeros(K,K);

for j=[1:K]

 pa = exp(-(i-j).^2/(2*s*s))/(sqrt(2*pi)*s); % normal distributon

centered at m0

 p(:,j)=pa;

end

S = makeP(p, L);

% gda_draw(V.p,'caption V');

% make a random starting state

X1.Klayers = Klayers;

X1.Kthicknesses = Kthicknesses;

X1.Kslownesses = Kslownesses;

X1.Nlayers = N.r(unidrnd(N.L),floor(Klayers/2));

X1.thickness = zeros(X1.Nlayers, 1);

for i=[1:X1.Nlayers]

 X1.thickness(i) = H.r(unidrnd(H.L),floor(Kthicknesses/2));

end

X1.slowness = zeros(X1.Nlayers + 1, 1);

for i=[1:(X1.Nlayers+1)]

 X1.slowness(i) = H.r(unidrnd(S.L),floor(Kslownesses/2));

end

% for summary statistics

dsum = zeros(Nd,1);

dsum2 = zeros(Nd,1);

bsum = zeros(Nd,1);

bcsum = zeros(Nd,1);

msum1 = zeros(3,1);

msum2 = zeros(5,1);

msum1sq = zeros(3,1);

msum2sq = zeros(5,1);

mprod1 = zeros(3,3);

mprod2 = zeros(5,5);

count1 = zeros(3,1);

count2 = zeros(5,1);

Hist1 = zeros(K,K,K);

Hist2 = zeros(K,K,K,K,K);

dimage = zeros(Kslownesses, Nd);

% Standard Metropolis-Hastings.

Nr = 10000000;

Nadopts = 0;

Hlayers = zeros(Klayers,1);

logp1max = (-1e6)*ones(Klayers,1);

for i=[1:Nr]

 % X1 is the current state; X2 is the successor state

 oldN = X1.Nlayers;

 % part 1, involving target distribution

 % A1 = p_successor/p_ccurrent;

 X2 = randomstate(X1, N, H, S);

 % the target distribution is the product of

 % a Normal distribution in the Error with variance vard

 % a truncated geometric distribution in the number of layers

 % with success parameter v (this is the prior information)

 [logp1, d1, b1, bc1] = logPE2ofd(X1, Klayers, Kthicknesses);

 [logp2, d2, b2, bc2] = logPE2ofd(X2, Klayers, Kthicknesses);

 logA1 = logp2 - logp1; % no prior + logPA(X2.Nlayers) -

logPA(X1.Nlayers);

 % part 2 involving perturbing distribution

 % A2 = p_current_given_successor / p_successor_given_current;

 logpx1x2 = logcondprob(X1, X2, N, H, S);

 logpx2x1 = logcondprob(X2, X1, N, H, S);

 logA2 = logpx1x2 - logpx2x1;

 % total test parameter

 logA = logA1 + logA2;

 A = exp(logA);

 % MH test for adopting the successor

 adopt = 0;

 if(A>=1)

 adopt=1;

 else

 Ap = random('uniform',0,1,1,1);

 if(A>Ap)

 adopt=1;

 end

 end

 if(adopt)

 X1 = X2;

 d1 = d2;

 b1 = b2;

 bc1 = bc2;

 logp1 = logp2;

 Nadopts = Nadopts+1;

 else

 % X1 = X1

 ;

 end

 % Z(i) = X1;

 % collect summary statistics

 dsum = dsum+d1;

 dsum2 = dsum2+(d1.^2);

 bsum = bsum+b1;

 bcsum = bcsum+bc1;

 Hlayers(X1.Nlayers) = Hlayers(X1.Nlayers)+1;

 if(X1.Nlayers == 1)

 H1=X1.thickness(1);

 s1=X1.slowness(1);

 s2=X1.slowness(2);

 Hist1(H1, s1, s2) = Hist1(H1, s1, s2)+1;

 count1(1)=count1(1)+1; msum1(1) = msum1(1) + H1; msum1sq(1) =

msum1sq(1) + H1^2;

 count1(2)=count1(2)+1; msum1(2) = msum1(2) + s1; msum1sq(2) =

msum1sq(2) + s1^2;

 count1(3)=count1(3)+1; msum1(3) = msum1(3) + s2; msum1sq(3) =

msum1sq(3) + s2^2;

 mym = [H1, s1, s2];

 for iii = [1:3]

 for jjj = [1:3]

 mprod1(iii,jjj) = mprod1(iii,jjj) + mym(iii)*mym(jjj);

 end

 end

 if(logp1 > logp1max(1))

 logp1max(1) = logp1;

 end

 else

 H1=X1.thickness(1);

 H2=X1.thickness(2);

 s1=X1.slowness(1);

 s2=X1.slowness(2);

 s3=X1.slowness(3);

 Hist2(H1, H2, s1, s2, s3) = Hist2(H1, H2, s1, s2, s3)+1;

 count2(1)=count2(1)+1; msum2(1) = msum2(1) + H1; msum2sq(1) =

msum2sq(1) + H1^2;

 count2(2)=count2(2)+1; msum2(2) = msum2(2) + H2; msum2sq(2) =

msum2sq(2) + H2^2;

 count2(3)=count2(3)+1; msum2(3) = msum2(3) + s1; msum2sq(3) =

msum2sq(3) + s1^2;

 count2(4)=count2(4)+1; msum2(4) = msum2(4) + s2; msum2sq(4) =

msum2sq(4) + s2^2;

 count2(5)=count2(5)+1; msum2(5) = msum2(5) + s3; msum2sq(5) =

msum2sq(5) + s3^2;

 mym = [H1, H2, s1, s2, s3];

 for iii = [1:5]

 for jjj = [1:5]

 mprod2(iii,jjj) = mprod2(iii,jjj) + mym(iii)*mym(jjj);

 end

 end

 if(logp1 > logp1max(2))

 logp1max(2) = logp1;

 end

 end

 for i=[1:Nd]

 dimage(d1(i), i) = dimage(d1(i), i)+1;

 end

end

mean1 = msum1./count1;

mstd1 = sqrt((count1 .* msum1sq - (msum1.^2)) ./ (count1.*(count1-1)));

mean2 = msum2./count2;

mstd2 = sqrt((count2 .* msum2sq - (msum2.^2)) ./ (count2.*(count2-1)));

Cm1 = zeros(3,3);

for iii = [1:3]

for jjj = [1:3]

 Cm1(iii,jjj) = (mprod1(iii,jjj)-msum1(iii)*mean1(jjj)-

mean1(iii)*msum1(jjj)+count1(1)*mean1(iii)*mean1(jjj))/(count1(1)-1);

end

end

Cm2 = zeros(5,5);

for iii = [1:5]

for jjj = [1:5]

 Cm2(iii,jjj) = (mprod2(iii,jjj)-msum2(iii)*mean2(jjj)-

mean2(iii)*msum2(jjj)+count2(1)*mean2(iii)*mean2(jjj))/(count2(1)-1);

end

end

fprintf('Gaussian State Uniform Nadopts %d Hlayer1 %d Nr %d\n', Nadopts,

Hlayers(1), Nr);

dmean = dsum/Nr;

dvar = dsum2/Nr - dmean.^2;

dstd = sqrt(dvar);

bmean = bsum/Nr;

bcmean = bcsum/Nr;

Hlayers = Hlayers/sum(Hlayers);

% don't let std dev get small than half a grid node

Dm = 1;

Dm2 = (Dm/2)^2;

Cm1c = Cm1 - diag(diag(Cm1)) + diag(diag(Cm1).*(diag(Cm1)>=Dm2)) +

diag(Dm2*(diag(Cm1)<Dm2));

Cm2c = Cm2 - diag(diag(Cm2)) + diag(diag(Cm2).*(diag(Cm2)>=Dm2)) +

diag(Dm2*(diag(Cm2)<Dm2));

% area calculation

A = zeros(Klayers,1);

detC = [det(Cm1c), det(Cm2c)];

for i=[1:Klayers]

 j=2*i+1;

 A(i) = ((2*pi)^(j/2))*sqrt(detC(i));

end

PE2.mean1 = mean1;

PE2.mstd1 = mstd1;

PE2.Cm1 = Cm1;

PE2.mean2 = mean2;

PE2.mstd2 = mstd2;

PE2.Cm2 = Cm2;

PE2.dmean = dmean;

PE2.bmean = bmean;

PE2.bcmean = bcmean;

PE2.Hlayers = Hlayers;

PE2.Nr = Nr;

PE2.logp1max = logp1max;

PE2.Dm2 = Dm2;

PE2.Cm1c = Cm1c;

PE2.Cm2c = Cm2c;

PE2.A = A;

% prior

PA = [1/A(1), 1/A(2)]' / (1/A(1) + 1/A(2));

PE2.PA = PA;

PE2.logPA = log(PA);

% plot

figure(1);

clf;

subplot(3,1,1);

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('z');

ylabel('s(z)');

plot([1:Nd]', dtrue, 'r-', 'LineWidth', 3);

plot([1:Nd]', dmean+dstd, 'k:', 'LineWidth', 2);

plot([1:Nd]', dmean, 'k-', 'LineWidth', 2);

plot([1:Nd]', dmean-dstd, 'k:', 'LineWidth', 2);

subplot(3,1,2);

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('z');

ylabel('P(b)');

plot([1:Nd]', bmean, 'k-', 'LineWidth', 2);

subplot(3,1,3);

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('z');

ylabel('P(b signed)');

plot([1:Nd]', bcmean, 'k-', 'LineWidth', 2);

figure(2);

clf;

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

hold on;

xlabel('layers');

ylabel('P(layers)');

plot([1:Klayers]', Hlayers, 'k-', 'LineWidth', 3);

figure(3);

clf;

colormap('jet');

subplot(3, 3, 1);

imagesc(squeeze(Hist1(PE2.Himin1,:,:)));

ylabel('s1');

xlabel('s2');

subplot(3, 3, 2);

imagesc(squeeze(Hist1(:,:,PE2.sjmin1)));

ylabel('H1');

xlabel('s1');

subplot(3, 3, 3);

imagesc(squeeze(Hist1(:,PE2.simin1,:)));

ylabel('H1');

xlabel('s2');

subplot(3, 3, 4);

imagesc(squeeze(Hist2(:,:,PE2.simin2,PE2.sjmin2,PE2.skmin2)));

ylabel('H1');

xlabel('H2');

subplot(3, 3, 5);

imagesc(squeeze(Hist2(PE2.Himin2,PE2.Hjmin2,:,:,PE2.skmin2)));

ylabel('s1');

xlabel('s2');

subplot(3, 3, 6);

imagesc(squeeze(Hist2(PE2.Himin2,PE2.Hjmin2,PE2.simin2,:,:)));

ylabel('s2');

xlabel('s3');

figure(4);

clf;

colormap('jet');

imagesc(dimage);

ylabel('s(z)');

xlabel('z');

save('PE2K_G_C.mat','PE2'); % C for contains covariance

