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This work was motivated by a discussion that I had with other Lamont scientists of Li et al.’s 

(2018) recent paper. 

 

Summary: We consider a fault (with no volume change) within a transverse isotropic material. 

Fault geometry is described by the fault plane and the auxiliary plane, which intersect along the 

null-direction (N-axis).  A moment tensor is said to contain no explosive component when its 

trace is identically-zero. Furthermore, if it also has one identically-zero eigenvalue, it is said to 

have no compensated linear-vector dipole (CLVD) component.  We show that the moment tensor 

has zero trace and one identically-zero eigenvalue when the axis of transverse isotropic 

symmetry is (A) parallel to N-axis; or (B) within the fault or auxiliary planes. 

(1) Definition and properties of the fault direction matrix 𝐅. 

(1.1) Presuming that faulting produces no volume change, the fault plane normal 𝐯 and slip 

direction 𝐮 must be mutually perpendicular unit vectors satisfying 𝐮 ∙ 𝐯 = 0. For completeness, 

we define a unit vector 𝐰 = 𝐮 × 𝐯 that is normal to the plane containing 𝐮  and 𝐯; that is, 𝐰 lies 

within the fault plane and is perpendicular to slip.  The w-direction is called the null direction (or 

N-axis). The (𝐮, 𝐰) plane is called the fault plane and the (𝐯, 𝐰) plane is called the auxiliary 

plane. 

(1.2) We define a symmetric fault-orientation matrix 𝐅: 

𝐅 = 𝐮𝐯T + 𝐯𝐮𝐓    or    𝐹𝑖𝑗 = 𝑢𝑖𝑣𝑗 + 𝑢𝑗𝑣𝑖  

The trace of 𝐅 is zero: 

tr(𝐅) = 𝐹𝑖𝑖 = 𝑢𝑖𝑣𝑖 +  𝑢𝑖𝑣𝑖 = 2 (𝐮 ∙ 𝐯) = 0 

The eigenvalues λ
(i)

 and eigenvectors 𝐟(i) of F are: 

𝐟(1) =
(𝐮 + 𝐯)

√2
   and    λ

(1)
= +1 

𝐟(2) =
(𝐮 − 𝐯)

√2
   and    λ

(2)
= −1 

𝐟(3) = 𝐰   and    λ
(3)

= 0 



These eigenvalues and eigenvectors can be verified by substitution into the eigenvalue equation 

𝐅𝐟(i) = λ
(i)𝐟(i): 

𝐅𝐟(1) =
𝟏

√2
𝐮𝐯T(𝐮 + 𝐯) +

𝟏

√2
𝐯𝐮𝐓(𝐮 + 𝐯) = (

𝟏

√2
𝐮 +

𝟏

√2
𝐯) = λ

(1)
𝐟(1) 

𝐅𝐟(2) =
𝟏

√2
𝐮𝐯T(𝐮 − 𝐯) +

𝟏

√2
𝐯𝐮𝐓(𝐮 − 𝐯) = − (

𝟏

√2
𝐮 −

𝟏

√2
𝐯) = λ

(2)
𝐟(2) 

𝐅𝐟(3) = 𝐮𝐯T𝐰 + 𝐯𝐮𝐓𝐰 = 0 = λ
(3)

𝐟(3) 

The determinant of 𝐅 is zero, since the determinant is the product of the eigenvalues and one 

eigenvalue is zero: 

det(𝐅) = 0 

(2) Definition and properties of the moment tensor. 

(2.1) The moment tensor 𝐦 equivalent to the fault is defined as: 

𝑚𝑖𝑗 = �̅�𝛺 𝐶𝑖𝑗𝑝𝑞𝑢𝑝𝑣𝑞 

where 𝐂 is the Voigt elasticity tensor, �̅� is the scalar slip and 𝛺 is the fault area (Aki and 

Richards, 2009, their equation 3.19). 

Because of the symmetries of the Voigt tensor (𝐶𝑖𝑗𝑝𝑞 = 𝐶𝑖𝑗𝑞𝑝 = 𝐶𝑗𝑖𝑝𝑞 = 𝐶𝑝𝑞𝑖𝑗), we can also write 

the moment tensor in terms of 𝐅: 

𝑚𝑖𝑗 = ½�̅�𝛺 𝐶𝑖𝑗𝑝𝑞𝑢𝑝𝑣𝑞 + ½�̅�𝛺 𝐶𝑖𝑗𝑝𝑞𝑢𝑝𝑣𝑞 

= ½�̅�𝛺 𝐶𝑖𝑗𝑝𝑞𝑢𝑝𝑣𝑞 + ½�̅�𝛺 𝐶𝑖𝑗𝑞𝑝𝑢𝑞𝑣𝑝 

= ½�̅�𝛺 𝐶𝑖𝑗𝑝𝑞(𝑢𝑝𝑣𝑞 + 𝑢𝑞𝑣𝑝) = ½�̅�𝛺 𝐶𝑖𝑗𝑝𝑞𝐹𝑝𝑞 

(3) Fault in an isotropic medium. 

(3.1) For isotropic media, the Voigt tensor is: 

𝐶𝑖𝑗𝑝𝑞 = λ𝛿𝑖𝑗𝛿𝑝𝑞 + 𝜇𝛿𝑖𝑝𝛿𝑗𝑞 + 𝜇𝛿𝑖𝑞𝛿𝑗𝑝 

The moment tensor equivalent to a fault is: 

𝑚𝑖𝑗 = �̅�𝛺λ𝛿𝑖𝑗𝛿𝑝𝑞𝑢𝑝𝑣𝑞 + �̅�𝛺𝜇𝛿𝑖𝑝𝛿𝑗𝑞𝑢𝑝𝑣𝑞 + �̅�𝛺𝜇𝛿𝑖𝑞𝛿𝑗𝑝𝑢𝑝𝑣𝑞 = 

= �̅�𝛺λ𝛿𝑖𝑗(𝐮 ∙ 𝐯) + �̅�𝛺𝜇(𝑢𝑖𝑣𝑗 + 𝑢𝑗𝑣𝑖) = 0 + �̅�𝛺𝜇𝐹𝑖𝑗 



Because the moment tensor 𝐦 is proportional to 𝐅, it has zero trace, eigenvalues of 

(+�̅�𝛺𝜇, −�̅�𝛺𝜇, 0) and zero determinant. Consequently, the moment tensor equivalent to a fault 

in an isotropic material has no explosive or CLVD components. 

(3.2) When one contracts the first pair of indices of the isotropic Voigt tensor to form a 

symmetric matrix 𝐐, this matrix is proportional to a Kronecker delta function: 

𝑄𝑝𝑞 ≡ 𝐶𝑖𝑖𝑝𝑞 = λ𝛿𝑖𝑖𝛿𝑝𝑞 + 𝜇𝛿𝑖𝑝𝛿𝑖𝑞 + 𝜇𝛿𝑖𝑞𝛿𝑖𝑝 = (3λ + 2𝜇)𝛿𝑝𝑞 

Therefore, another way of showing that the trace of the moment tensor is zero is: 

tr(𝐦) = ½�̅�𝛺 𝑄𝑝𝑞𝐹𝑝𝑞 = ½�̅�𝛺 tr(𝑸𝑭) = ½�̅�𝛺 (3λ + 2𝜇)𝛿𝑝𝑞𝐹𝑝𝑞 = ½�̅�𝛺 (3λ + 2𝜇)𝐹𝑝𝑝 = 

= ½�̅�𝛺 (3λ + 2𝜇) tr(𝐅) =  0 

(4) Moment tensor in general isotropic media. 

(4.1) In general anisotropic media, the trace of the moment tensor is: 

tr(𝐦) = 𝑚𝑖𝑖 = ½�̅�𝛺 𝑄𝑝𝑞𝐹𝑝𝑞 = ½�̅�𝛺 𝑄𝑞𝑝𝐹𝑝𝑞  = ½�̅�𝛺 tr(𝐐𝐅) 

While tr(𝐅) = 0, in general, tr(𝐐𝐅) ≠ 0, implying that, in general, the moment tensor has an 

explosive component. A special case where tr(𝐐𝐅) = 0 occurs in the isotropic case, where 𝐐 =

(3λ + 2𝜇) 𝐈 and tr(𝐐𝐅) ∝ tr(𝐅) = 0 (implying that the explosive component is zero in this 

case). 

(5) Trace of the moment tensor in a transverse isotropic medium aligned with the N-direction of 

the fault. 

(5.1) When a medium has a rotational symmetry, the Voigt tensor is invariant under a rotation 𝐑 

that expresses that symmetry.  Here 𝐑 is an orthogonal matrix that satisfies 𝐑T = 𝐑−1 (or 

𝑅𝑖𝑝𝑅𝑖𝑞 = 𝛿𝑝𝑞). The symmetry conditions is: 

 𝐶𝑖𝑗𝑘𝑙 = 𝑅𝑖𝑝𝑅𝑗𝑝𝑅𝑘𝑟𝑅𝑙𝑠𝐶𝑝𝑞𝑟𝑠 

Contracting the first two indices yields a constraint on 𝐐: 

𝑄𝑘𝑙 = 𝐶𝑖𝑖𝑘𝑙 = 𝑅𝑖𝑝𝑅𝑖𝑝𝑅𝑘𝑟𝑅𝑙𝑠𝐶𝑝𝑞𝑟𝑠 = 𝛿𝑝𝑞𝑅𝑘𝑟𝑅𝑙𝑠𝐶𝑝𝑞𝑟𝑠 = 𝑅𝑘𝑟𝑅𝑙𝑠𝐶𝑝𝑝𝑟𝑠 = 𝑅𝑘𝑟𝑅𝑙𝑠𝑄𝑟𝑠 

Thus, the contracted Voigt tensor 𝐐 has the same symmetry as the Voigt tensor, itself. 

(5.2) In the special case of transverse isotropy, 𝐑 = 𝐑(θ) corresponds to a rotation by an 

arbitrary angle θ around the symmetry axis. For traverse isotropic material with the symmetry 

axis parallel to the z-axis, the nonzero elements of the Voigt tensor are: 

 



𝐶1111 = 𝐶2222 = 𝐴    and  𝐶3333 = 𝐶 

𝐶2323 = 𝐶1313 = 𝐿   and    𝐶1212 = 𝑁     

𝐶1122 = 𝐴 − 2𝑁    and    𝐶1133 =  𝐶2233 = 𝐹 = 𝜂(𝐴 − 2𝑁) 

(and their allowable permutations). Here (𝐴, 𝐶, 𝐿, 𝑁, 𝐹) are Love’s (1927) constants and 𝜂 is the 

ratio 𝐹/(𝐴 − 2𝑁). Note that any element with an “unrepeated” index is zero. 

Invariance under this 𝐑 implies that, in a coordinate system with the z-axis aligned with the 

symmetry axis, 𝐐 has the form: 

𝐐 = [

𝑄11 0 0
0 𝑄11 0
0 0 𝑄33

] 

This form can be derived by requiring that the equation 𝐐 = 𝐑𝐐𝐑T hold for all rotations about 

the z-axis, irrespective of rotation angle 𝜃. Defining 𝑐 ≡ cos(𝜃) and 𝑠 = sin(𝜃), this equation is:  

[

𝑄11 𝑄12 𝑄13

𝑄12 𝑄22 𝑄23

𝑄13 𝑄23 𝑄33

] = [
𝑐 −𝑠 0
𝑠 𝑐 0
0 0 1

] [

𝑄11 𝑄12 𝑄13

𝑄12 𝑄22 𝑄23

𝑄13 𝑄23 𝑄33

] [
𝑐 𝑠 0

−𝑠 𝑐 0
0 0 1

] = 

[

(𝑐𝑄11 − 𝑠𝑄12) (𝑐𝑄12 − 𝑠𝑄22) (𝑐𝑄13 − 𝑠𝑄23)

(𝑠𝑄11 + 𝑐𝑄12) (𝑠𝑄12 + 𝑐𝑄22) (𝑠𝑄13 + 𝑐𝑄23)
𝑄13 𝑄23 𝑄33

] [
c s 0

−s c 0
0 0 1

] = 

[

(𝑐2𝑄11 + 𝑠2𝑄22) 𝑐𝑠𝑄11 − 𝑠2𝑄12 + 𝑐2𝑄12 − 𝑐𝑠𝑄22 (𝑐𝑄13 − 𝑠𝑄23)

. (𝑠2𝑄11 + 𝑐2𝑄22) (𝑠𝑄13 + 𝑐𝑄23)

. . 𝑄33

] 

The (1,1) and (2,2) elements of the equation are: 

𝑄11 = 𝑐2𝑄11 + 𝑠2𝑄22     and    𝑄22 = 𝑠2𝑄11 − 𝑐2𝑄22  

Subtracting them, we find: 

𝑄11 − 𝑄22 = (𝑐2 − 𝑠2)𝑄11 − (𝑐2 − 𝑠2)𝑄22 = cos(2𝜃) (𝑄11 − 𝑄22) 

This equation can only be satisfied when 𝑄11 − 𝑄22 = 0; that is, 𝑄11 = 𝑄22.  The (1,2) element 

of the equation is then: 

𝑄12 = 𝑐𝑠𝑄11 − 𝑠2𝑄12 + 𝑐2𝑄12 − 𝑐𝑠𝑄22 = −𝑠2𝑄12 + 𝑐2𝑄12 = cos (2𝜃)𝑄12 

Which implies that 𝑄12 = 0.  The (1,3) and (2,3) elements are: 

𝑄13 = 𝑐𝑄13 − 𝑠𝑄23   and   𝑄23 =  𝑠𝑄13 + 𝑐𝑄23 

Or 



[
𝑄13

𝑄23
] = [

𝑐 −𝑠
𝑠 𝑐

] [
𝑄13

𝑄23
] 

This equation implies that the two-vector [𝑄13, 𝑄23]T is unchanged by a rotation, and that can 

only occur when the vector is zero; that is, 𝑄13 = 0 and 𝑄23 = 0. 

(5.3) Now suppose that the symmetry axis of anisotropy aligns with the z-axis and that the fault 

is in its principal coordinate system. As shown previously, 𝐐 and 𝐅 are both diagonal matrices in 

this coordinate system. Furthermore, 𝐐 has eigenvalues 𝛬(𝑖) = 𝑄𝑖𝑖.  The trace of the moment 

tensor is then: 

tr(𝐦) = tr(𝐐𝐅) = tr ([
𝛬(1) 0 0

0 𝛬(1) 0
0 0 𝛬(3)

] [
1 0 0
0 −1 0
0 0 0

]) = 

= tr ([
𝛬(1) 0 0

0 −𝛬(1) 0
0 0 0

]) = 0 

Furthermore, the trace remains zero as we rotate the fault about the z-axis: 

𝐅′ = [
𝑐 𝑠 0

−𝑠 𝑐 0
0 0 1

] [
1 0 0
0 −1 0
0 0 0

] [
𝑐 −𝑠 0
𝑠 𝑐 0
0 0 1

] = [
0 −1 0

−1 0 0
0 0 0

] 

[
𝑐 𝑠 0

−𝑠 𝑐 0
0 0 1

] [
𝑐 −𝑠 0

−𝑠 −𝑐 0
0 0 0

] = [
(𝑐2 − 𝑠𝑠) −2𝑐𝑠 0

−2𝑐𝑠 −(𝑐2 − 𝑠𝑠) 0
0 0 0

] 

tr(𝐦) = tr(𝐐𝐅′) = [
𝛬(1)(𝑐2 − 𝑠𝑠) −2𝛬(1)𝑐𝑠 0

−2𝛬(1)𝑐𝑠 −𝛬(1)(𝑐2 − 𝑠𝑠) 0
0 0 0

] = 0 

(6) Eigenvalues of the moment tensor in a transverse isotropic medium aligned with the N-

direction of the fault. 

(6.1) When coordinate system is aligned with the principal directions of 𝐅, so that: 

𝐅 = [
1 0 0
0 −1 0
0 0 0

] 

and the axis of transverse isotropy is aligned with the z-axis, the diagonal elements of the 

moment tensor can be easily calculated: 

𝑚33

½�̅�𝛺 
= 𝐶3311𝐹11 + 𝐶3322𝐹22 = 𝐶3311 − 𝐶3322 



Since the Voigt tensor is invariant with respect to interchanging the 𝑥 and 𝑦 axes, 𝐶3311 = 𝐶3322 

and 𝑚33 = 0. The other diagonal elements are: 

𝑚11

½�̅�𝛺 
= 𝐶1111𝐹11 + 𝐶1122𝐹22 = (𝐶1111 − 𝐶1122) 

𝑚22

½�̅�𝛺 
= 𝐶2211𝐹11 + 𝐶2222𝐹22 = 𝐶2211 − 𝐶2222 = −(𝐶1111 − 𝐶1122) = −

𝑚11

½�̅�𝛺 
 

Here we have used the rotational symmetry  𝐶2222 = 𝐶1111 and the symmetry 𝐶1122 = 𝐶2211.  As 

expected, 𝑚22 = −𝑚11.  The off-diagonal components are all zero: 

𝑚12

½�̅�𝛺 
= 𝐶1211𝐹11 + 𝐶1222𝐹22 = 0 

𝑚13

½�̅�𝛺 
= 𝐶1311𝐹11 + 𝐶1322𝐹22 = 0 

𝑚23

½�̅�𝛺 
= 𝐶2311𝐹11 + 𝐶2322𝐹22 = 0 

since in a traverse isotropic material, 𝐶1211 = 𝐶1222 = 𝐶1311 = 𝐶1322 = 𝐶2311 = 𝐶2322 = 0. 

Thus m has one identically-zero eigenvalue and no CLVD component. Rotating 𝐮 and 𝐯 about 

the z-axis does not change the eigenvalues, because due to the rotational symmetry of the Voigt 

tensor, it corresponds to a coordinate rotation, and the eigenvalues of a matrix are invariant under 

coordinate rotations. 

(6.2) In detail, the above argument is as follows:  After a coordinate rotation about the z-axis, the 

moment tensor becomes 

𝑚′𝑖𝑗 = ½�̅�𝛺 [𝑅𝑖𝑝𝑅𝑗𝑝𝑅𝑘𝑟𝑅𝑙𝑠𝐶𝑝𝑞𝑟𝑠][𝑅𝑘𝑚𝑅𝑙𝑛𝐹𝑚𝑛] 

The eigenvalue of 𝐦′ are invariant under this rotation. Since the Voigt tensor is invariant under 

the rotation, we can rewrite the equation as: 

½𝑠𝐴 [𝐶𝑖𝑗𝑘𝑙][𝑅𝑘𝑚𝑅𝑙𝑛𝐹𝑚𝑛] 

This equation can be interpreted as counter-rotating the fault, as contrasted to rotating the 

coordinate system. 

(7.0) Here we show that the moment tensor has no explosive or CLVD component when the axis 

of symmetry is in (A) the fault plane; or (B) in the auxiliary plane. 

(7.1) Starting with the 𝐅 matrix is in its principal coordinate system, we rotate it about the z-axis 

by ±45°, so that either the fault plane or the auxiliary plane aligns with the x-axis: 



1

√2
[

1 ±1 0
∓1 1 0
0 0 1

] [
1 0 0
0 −1 0
0 0 0

]
1

√2
[

1 ∓1 0
±1 1 0
0 0 1

] = ± [
0 −1 0

−1 0 0
0 0 0

] 

and tilt it by an angle 𝜃 in the (𝑥, 𝑧) plane.  Defining 𝑐 ≡ cos(𝜃) and 𝑠 ≡ sin(𝜃), we have: 

± [
𝑐 0 −𝑠
0 1 0
𝑠 0 𝑐

] [
0 −1 0

−1 0 0
0 0 0

] [
𝑐 0 𝑠
0 1 0

−𝑠 0 𝑐
] = ∓ [

0 𝑐 0
𝑐 0 𝑠
0 𝑠 0

] 

The matrix 𝐐𝐅 is then: 

𝐐𝐅 = ∓ [
𝛬(1) 0 0

0 𝛬(1) 0
0 0 𝛬(3)

] [
0 𝑐 0
𝑐 0 𝑠
0 𝑠 0

] = ∓ [
0 𝛬(1)𝑐 0

𝛬(1)𝑐 0 𝛬(1)𝑠
0 𝛬(3)𝑠 0

] 

Note that tr(𝐐𝐅) = 0. The moment tensor has no explosive component. 

(7.2) The elements of the moment tensor are: 

𝑚11

½𝑠𝐴
= 𝐶1112𝐹12 + 𝐶1121𝐹21 + 𝐶1123𝐹23 + 𝐶1132𝐹32 = 0 

𝑚22

½𝑠𝐴
= 𝐶2212𝐹12 + 𝐶2221𝐹21 + 𝐶2223𝐹23 + 𝐶2232𝐹32 = 0 

𝑚33

½𝑠𝐴
= 𝐶3312𝐹12 + 𝐶3321𝐹21 + 𝐶3323𝐹23 + 𝐶3332𝐹32 = 0 

𝑚12

½𝑠𝐴
= 𝐶1212𝐹12 + 𝐶1221𝐹21 + 𝐶1223𝐹23 + 𝐶1232𝐹32 = 

= 𝐶1212𝐹12 + 𝐶1221𝐹21 = ∓2𝑁𝑐 

𝑚13

½𝑠𝐴
= 𝐶1312𝐹12 + 𝐶1321𝐹21 + 𝐶1323𝐹23 + 𝐶1332𝐹32 = 0 

𝑚23

½𝑠𝐴
= 𝐶2312𝐹12 + 𝐶2321𝐹21 + 𝐶2323𝐹23 + 𝐶2332𝐹32 = 

= 𝐶2323𝐹23 + 𝐶2332𝐹32 = ∓2𝑠𝐿 

𝐦

½𝑠𝐴
= ∓2 [

0 𝑐𝑁 0
𝑐𝑁 0 𝑠𝐿
0 𝑠𝐿 0

] 

Note that the matrix on the r.h.s. of this equation has the form: 



[
0 𝐴 0
𝐴 0 𝐵
0 𝐵 0

] 

where 𝐴 ≡ −𝑐𝑁 and 𝐵 ≡ 𝑠𝐿.  The characteristic equation for its eigenvalues is: 

det [
−𝜆 𝐴 0
𝐴 −𝜆 𝐵
0 𝐵 −𝜆

] = 0 

−𝜆3 + 𝐴2𝜆 + 𝐵2𝜆 = −𝜆[𝜆2 − (𝐴2 + 𝐵2)] = 0 

The characteristic equation has the solutions 𝜆(1) = (𝐴2 + 𝐵2)½, 𝜆(2) = −(𝐴2 + 𝐵2)½, and 

𝜆(3) = 0. The moment tensor has one identically-zero eigenvalue and, consequently, no CLVD 

component. 

8.0 Numerical Test: We test these ideas using a transverse isotropic tensor built from Love 

parameters: 

𝐴 = 𝜌𝑣𝑝𝐻
2   and   𝐶 = 𝜌𝑣𝑝𝑉

2     and   𝑁 = 𝜌𝑣𝑠𝐻
2    and   𝐿 = 𝜌𝑣𝑠𝑉

2    and   𝐹 = 𝜂(𝐴 − 2𝐿) 

where the parameters are given by Dziewonski and Anderson’s (1981) PREM model, evaluated 

at 100 km depth: 𝑣𝑝𝑉 = 7.86732 km/s,𝑣𝑝𝐻 = 8.06410 km/s, 𝑣𝑠𝑉 = 4.32041 km/s, 𝑣𝑠𝐻 =

4.44818 km/s, 𝜂 = 0.92987 and 𝜌 = 3372.54 kg/m3.  The reference tensor has a symmetry axis 

that is parallel to the z-axis. 

 

The reference fault is a vertical strike-slip fault, with the u-direction parallel to the x-axis, the   

N-direction parallel to the z-axis, and �̅�𝛺 = 1. 

The reference fault is held fixed during the simulation, but the reference Voigt tensor is tilted 

from the z-axis by an angle 𝜃 and then rotated around the z-axis by an angle 𝜓.  The rotated 

tensor, evaluated for many (𝜃, 𝜓), is used to calculate the moment tensor 𝐦. 

We now need to develop proxies that quantify the amount of explosive and CLVD components 

in a given moment tensor. The overall size of the moment tensor is given by ‖𝐦‖𝟐 =

(𝑚𝑖𝑗𝑚𝑖𝑗)
½

= (𝛌T𝛌)½, where 𝛌 = [𝜆(1), 𝜆(2), 𝜆(3)]
T
 are its eigenvalues.  The normalized 

amplitude 𝑋 of the explosive component is then defined as: 

𝑋 ≡
⅓ tr(𝐦)

‖𝐦‖𝟐
 

The deviatoric part of the moment tensor: 

∆𝐦 = 𝐦 − ⅓ tr(𝐦)𝐈    with eigenvalues   ∆λ(𝑖) = λ(𝑖) − ⅓ tr(𝐦) 

The deviatoric part has zero trace and, therefore, no explosive component.  



A CLVD pattern of eigenvalues is of the form 𝜆(𝑝) = 𝜆(𝑞) = −½𝜆(𝑟), where (𝑝, 𝑞, 𝑟) are unique 

indices (i.e. (𝑝, 𝑞, 𝑟)  is a permutation of (1,2,3)). The smallest CVLD pattern that can be 

subtracted from ∆𝐦 to produce one identically-zero eigenvalue is the pattern 𝜆(𝑝) = 𝜆(𝑞) =

−½𝜆(𝑟) = ∆𝜆(𝑚𝑖𝑛), were ∆𝜆(𝑚𝑖𝑛) is eigenvalue of ∆𝐦 with the smallest absolute value. The 

normalized amplitude 𝑉 of the CLVD component is, therefore, defined as: 

𝑉 ≡
min

𝑖
|∆𝜆(𝑖)|

‖𝐦‖𝟐
 

We calculate 𝑋, 𝑉 and their ratio for the PREM model described above (Figure 1) for a large 

suite of randomly chosen rotations and tilts. As expected, both 𝑋and 𝑉 are zero along the lines of 

constant tilt, 𝜃 = 0, 𝜃 = 𝜋 and 𝜃 = 2𝜋, and along the lines of constant rotation, 𝜓 = 0, 𝜓 =

𝜋/2, 𝜓 = 2𝜋/2, 𝜓 = 3𝜋/4 and 𝜓 = 4𝜋/2.   The calculation verifies that these are the only loci 

of points at which either the explosive or CLVD components are zero. In this example, the ratio 

𝑉/𝑋 seems to be a function of 𝜃, only, but in general it can be a function of both (𝜃, 𝜓) (Figure 

2). 

 

Figure 1.  The explosion proxy 𝑋, CLVD proxy 𝑉, and the ratio 𝑉/𝑋 as a function of tilt 𝜃 and 

rotation 𝜓, using the PREM anisotropy. 

Figure 2.  The explosion proxy 𝑋, CLVD proxy 𝑉, and the ratio 𝑉/𝑋 as a function of tilt 𝜃 and 

rotation 𝜓, for a Voigt tensor in which anisotropy is a factor of ten greater than PREM’s. 

9. I have checked most of the equations in this note numerically. 
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Matlab script that implements the plot. 

clear all; 

  

  

EXPLscale = 0.03; 

CLVDscale = 0.03; 

RATIOscale = 2; 

  

NITER = 10000; 

  

% PREM ar 100 km 

VpV_PREM = 7.86732; 

VpH_PREM = 8.06410; 

Vp_PREM = (VpH_PREM+VpV_PREM)/2; 

Dvp_PREM = (VpH_PREM-VpV_PREM)/2; 

VsVH_PREM = 4.32041; 

VsHH_PREM = 4.44818; 

Vs_PREM = (VsHH_PREM+VsVH_PREM)/2; 

Dvs_PREM = (VsHH_PREM-VsVH_PREM)/2; 

eta_PREM = 0.92987; 

  

% Model is PREM-like, but with amplified anisotropy 

aniP = 1.00; 

aniS = 1.00; 

VpV = Vp_PREM - aniP*Dvp_PREM; 

VpH = Vp_PREM + aniP*Dvp_PREM; 

VsVH = Vs_PREM - aniS*Dvs_PREM; 

VsHH = Vs_PREM + aniS*Dvs_PREM; 

eta = eta_PREM; 

rho = 3.27254; 

rho=1;  % override density, since absolute moment not of interest. 

  

v = [1,0,0]'; 

u = [0,1,0]'; 

w = [0,0,1]'; 

  

c1 = aniso(VpH,VpV,VsHH,VsVH,eta,rho); 

C1 = c2C(c1); 

checksym(C1); 

  

figure(1); 

clf; 

cm = colormap('jet'); 

Ncm = length(cm); 

  

subplot(1,3,1); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

axis( [0, 360, 0, 360] ); 

xlabel('theta'); 

ylabel('psi'); 

title('X'); 

caxis( [0, 100*EXPLscale] ); 

cb = colorbar(); 

set(get(cb,'title'),'string','%'); 

  

subplot(1,3,2); 

set(gca,'LineWidth',2); 



set(gca,'FontSize',14); 

hold on; 

axis( [0, 360, 0, 360] ); 

xlabel('theta'); 

ylabel('psi'); 

title('V'); 

caxis( [0, 100*CLVDscale] ); 

colorbar(); 

cb = colorbar(); 

set(get(cb,'title'),'string','%'); 

  

subplot(1,3,3); 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

hold on; 

axis( [0, 360, 0, 360] ); 

xlabel('theta'); 

ylabel('psi'); 

title('V/X'); 

caxis( [0, 100*RATIOscale] ); 

cb = colorbar(); 

set(get(cb,'title'),'string','%'); 

  

for itt = [1:NITER] 

  

% note: not clear to me whether I am uniformly samplig the sphere 

phi = 0; 

theta = random('Uniform',0,2*pi,1,1); 

psi = random('Uniform',0,2*pi,1,1); 

R = eulermatrix( phi, theta, psi ); 

CR = rotateC(C1,R); 

checksym(CR); 

  

mt1 = makemt(CR,u,v); 

d1 = eig(mt1); 

AMP = sqrt(d1'*d1); 

tr = sum(d1); 

EXPL = abs(tr/3)/AMP; 

  

d1d = d1 - tr/3; 

d1dmin = min(abs(d1d)); 

CLVD = d1dmin/AMP; 

  

RATIO = abs(CLVD)/(abs(EXPL)+1e-6); 

  

k = 1+floor( (Ncm-1)*EXPL/EXPLscale ); 

if( k<1 ) 

    k=1; 

elseif (k>Ncm ) 

    k=Ncm; 

end 

subplot(1,3,1); 

plot( (180*theta/pi), (180*psi/pi), '.', 'Color', cm(k,:), 'LineWidth', 3 ); 

  

k = 1+floor( (Ncm-1)*CLVD/CLVDscale ); 

if( k<1 ) 

    k=1; 

elseif (k>Ncm ) 

    k=Ncm; 

end 

subplot(1,3,2); 

plot( (180*theta/pi), (180*psi/pi), '.', 'Color', cm(k,:), 'LineWidth', 3 ); 

  



k = 1+floor( (Ncm-1)*RATIO/RATIOscale ); 

if( k<1 ) 

    k=1; 

elseif (k>Ncm ) 

    k=Ncm; 

end 

subplot(1,3,3); 

plot( (180*theta/pi), (180*psi/pi), '.', 'Color', cm(k,:), 'LineWidth', 3 ); 

  

end 

  

 

function c = aniso(VpH,VpV,VsHH,VsVH,eta,rho) 

VpH2 = VpH^2; 

VpV2 = VpV^2; 

VsHH2 = VsHH^2; 

VsVH2 = VsVH^2; 

c = zeros(6,6); 

c(1,1) = VpH2; 

c(2,2) = VpH2; 

c(3,3) = VpV2; 

c(4,4) = VsVH2; 

c(5,5) = VsVH2; 

c(6,6) = VsHH2; 

c(1,2) = VpH2-2*VsHH2; 

c(2,1) = c(1,2); 

c(1,3) = eta*(VpH2-2*VsVH2); 

c(3,1) = c(1,3); 

c(2,3) = eta*(VpH2-2*VsVH2); 

c(3,2) = c(2,3); 

c = rho*c; 

end 

 

 

function [C] = c2C(c) 

% 6x6 to 3x3x3x3 Hook's Law tensor conversion 

% from Fuchs, K, Phys. Earth Planet. Int. 31, 93-118, 1983 

C = zeros(3,3,3,3); 

    for m=[0:2] 

    for n=[0:2] 

    for p=[0:2] 

    for q=[0:2] 

  

    if( m==n ) 

        i=(m+n+2)/2; 

    else 

        i=9-m-n-2; 

    end 

     

    if( p==q ) 

        j=(p+q+2)/2; 

    else 

        j=9-p-q-2; 

    end 

    % C-language to MATLAB index conversion here 

    C(m+1,n+1,p+1,q+1) = c(i-1+1,j-1+1); 

    end 

    end 

    end 

    end 

  

end 



  

 

function status = checksym(C) 

    % check c(ijkl)=c(ijlk) */ 

    for i=[1:3] 

    for j=[1:3] 

    for k=[1:3] 

    for l=[1:3] 

        a = 0.5*(C(i,j,k,l) + C(i,j,l,k)); 

        d = 0.5*(C(i,j,k,l) - C(i,j,l,k)); 

        if( abs(d/a)>1e-6 ) 

            fprintf('test1 failed C%d%d%d%d ~= C%d%d%d%d\n',i,j,k,l,i,j,l,k); 

            fprintf('%f ~= %f\n',  C(i,j,k,l), C(i,j,l,k) ); 

            status=0; 

            return; 

        end 

    end 

    end 

    end 

    end 

     

    % check c(ijkl)=c(jikl) 

    for i=[1:3] 

    for j=[1:3] 

    for k=[1:3] 

    for l=[1:3] 

        a = 0.5*(C(i,j,k,l) + C(j,i,k,l)); 

        d = 0.5*(C(i,j,k,l) - C(j,i,k,l)); 

        if( abs(d/a) > 1e-6 ) 

            fprintf('test2 failed C%d%d%d%d ~= C%d%d%d%d\n',i,j,k,l,j,i,k,l); 

            fprintf('%f ~= %f\n',  C(i,j,k,l), C(j,i,k,l) ); 

            status=0; 

            return; 

        end 

    end 

    end 

    end 

    end 

     

    % check c(ijkl)=c(klij) 

    for i=[1:3] 

    for j=[1:3] 

    for k=[1:3] 

    for l=[1:3] 

        a = 0.5*(C(i,j,k,l) + C(k,l,i,j)); 

        d = 0.5*(C(i,j,k,l) - C(k,l,i,j)); 

        if( abs(d/a) > 1e-6 ) 

            fprintf('test3 failed C%d%d%d%d ~= C%d%d%d%d\n',i,j,k,l,k,l,i,j); 

            fprintf('%f ~= %f\n',  C(i,j,k,l), C(k,l,i,j) ); 

            status=0; 

            return; 

        end 

    end 

    end 

    end 

    end 

  

    status=1; 

end 

  

 

function s = eulermatrix( phi, theta, psi ) 

  



% euler angles, phi, theta, psi in degrees 

% see Corbin & Stehle (1960) 

% rotation thru phi about 3-axis 

% thru theta about new 1-axis; 

% thru psi about new 3-axis 

% note that these angles rotate the coordinate system, not; 

% the object! So a phi of 30 deg rotates am object in that 

% coordinate system by -30 deg 

  

s = zeros(3,3); 

  

s(1,1) = cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi); 

s(1,2) = cos(psi)*sin(phi) + sin(psi)*cos(theta)*cos(phi); 

s(1,3) = sin(psi)*sin(theta); 

  

s(2,1) = (-sin(psi)*cos(phi)-cos(psi)*cos(theta)*sin(phi)); 

s(2,2) = (-sin(psi)*sin(phi)+cos(psi)*cos(theta)*cos(phi)); 

s(2,3) = cos(psi)*sin(theta); 

  

s(3,1) = sin(theta)*sin(phi); 

s(3,2) = (-sin(theta)*cos(phi)); 

s(3,3) = cos(theta); 

  

end 

 

 

function [Cout] = rotateC(Cin,R) 

Cout = zeros(3,3,3,3); 

for i=[1:3] 

for j=[1:3] 

for k=[1:3] 

for l=[1:3] 

    Cout(i,j,k,l)=0; 

    for p=[1:3] 

    for q=[1:3] 

    for r=[1:3] 

    for s=[1:3] 

        Cout(i,j,k,l) = Cout(i,j,k,l) + R(i,p)*R(j,q)*R(k,r)*R(l,s)*Cin(p,q,r,s); 

    end 

    end 

    end 

    end 

end 

end 

end 

end 

end 

 

 

function mt = makemt(c,u,v) 

% makesthe moment tensor 

% see Aki and Richards (2009) eqn 3.19 

% u slip discontinuity, v fault normal 

mt=zeros(3,3); 

for p=[1:3] 

for q=[1:3] 

    for i=[1:3] 

    for j=[1:3] 

        mt(p,q) = mt(p,q) + u(i)*v(j)*c(i,j,p,q); 

    end 

    end 

end 



end 

end 

 

 

 

 

 

 


