
Reconstructing Resolution from Covariance, with Application to Ensembles of Solutions

Bill Menke, October 21, 2018

This derivation follows up on the ideas of Menke (2018, section 5.3). We start by examining a

linear least squares problem with data 𝐝 = 𝐆𝐦 (with covariance 𝐂𝑑) and prior information 𝐡 =

𝐇𝐦 (with covariance 𝐂ℎ). Generalized Least Squares gives the estimated model parameters

𝐦est and posterior covariance 𝐂𝑚 as:

𝐦est = 𝐀−1[𝐆T𝐂d
−1𝐝𝑜𝑏𝑠 + 𝐇T𝐂h

−1𝐡]

𝐂𝑚 = 𝐀−1 with 𝐀 ≡ [𝐆T𝐂d
−1𝐆 + 𝐇T𝐂h

−1𝐇]

(1)

As Menke (2018) points out, the problem is perfectly resolved as long as 𝐀−1exists; that is 𝐑 =

𝐈. Nevertheless, a non-trivial resolution matrix can be constructed for deviations ∆𝐦 = 𝐦 − 𝐦H

of the model parameters away from the prior solution 𝐦H. By prior solution, we mean the

solution implied by the prior information, acting alone; that is: 𝐦H = [𝐇T𝐂h
−1𝐇]−𝟏𝐇T𝐂h

−1𝐡,

which has covariance 𝐂𝑚
H = [𝐇T𝐂h

−1𝐇]−𝟏. (Menke (2018) recommends adding very weak

smallness prior information to the problem in cases where the prior information is not complete,

so that [𝐇T𝐂h
−1𝐇]−𝟏 always exists). The resolution matrix 𝐑G for ∆𝐦 is:

𝐑G ≡ 𝐀−1𝐆T𝐂d
−1𝐆 = 𝐀−1(𝐀 − 𝐇T𝐂h

−1𝐇) = 𝐈 − 𝐀−1𝐇T𝐂h
−1𝐇

𝐑G = 𝐈 − 𝐂𝑚𝐇T𝐂h
−1𝐇 = 𝐈 − 𝐂𝑚[𝐂𝒎

H]−𝟏

(2)

Note that the resolution is exactly zero when 𝐂𝑚 = 𝐂𝑚
H . This is the case where the data

contributes no information, so that the posterior covariance of the model parameters is just their

prior covariance.

The resolution 𝐑G = 𝐈 − 𝐂𝑚𝐇T𝐂h
−1𝐇 can be constructed from the matrices 𝐂𝑚, 𝐇 and 𝐂ℎ. I

propose that this formula be applied to any problem for which: (1) an estimate of the posterior

covariance matrix 𝐂𝑚 is available, and (2) the prior information is linear (with known 𝐇 and 𝐂ℎ).

The second criterion is not especially restrictive, since many problems can be adequately

regularized with linear information, such a small solution size, small first or second derivative,

etc. The approximation is accurate as long as the underlying problem has an error surface that is

approximately quadratic near its minimum.

Now suppose one has a large number, say 𝐿, of solutions 𝐦(𝑖) that sample a posterior probability

distribution 𝑝(𝐦|𝐝obs) (constructed, say, using the Metropolis-Hastings algorithm). The mean

𝐦̅ and covariance 𝐂𝑚 can be estimated as the sample mean and covariance:

𝐦̅𝒆𝒔𝒕 =
1

𝐿
∑ 𝐦(𝑖)

𝑖

 and [𝐂𝑚
𝑒𝑠𝑡]𝑗𝑘 =

1

𝐿
∑(𝑚𝑗

(𝑖)
− 𝑚̅𝑗)(𝑚𝑘

(𝑖)
− 𝑚̅𝑘)

𝑖

(3)

And the resolution as:

𝐑G ≈ 𝐈 − 𝐂𝑚
𝑒𝑠𝑡𝐇T𝐂h

−1𝐇

(4)

In cases where 𝐇 and 𝐂ℎ have not been explicitly stated, the Metropolis-Hastings algorithm may

be used to sample the prior distribution, acting alone, and Equation 3 used to estimate 𝐂𝑚
H . The

resolution is then given by:

𝐑G ≈ 𝐈 − 𝐂𝑚
𝑒𝑠𝑡[𝐂𝑚

H𝑒𝑠𝑡]−1

(4)

This procedure may yield good results even when the prior constraints are nonlinear, as long as

the error surface for the prior information is approximately quadratic near its minimum.

We now examine a linear test scenario in which 𝑀 = 11 model parameters are evenly spaced in

an auxiliary parameter 𝑥. The data kernel 𝐆 has 𝑁 = 11 rows, each of which exponentially

decline with column number:

𝑑𝑖 = ∑ 𝐺𝑖𝑗
0 𝑚𝑗

𝑗

 with 𝐺𝑖𝑗
0 ∝ exp{−𝑐𝑖𝑥𝑗}

Here 𝑐𝑖 are decay rates that increase with row number 𝑖. The true model parameters are 𝑚𝑖 = 1

and the observed data 𝐝𝑜𝑏𝑠 are computed from the true data by adding Normally-distributed,

uncorrelated noise with zero mean and variance σ𝑑
2 . The prior information is taken to be

smallness of the first model parameter, and smallness of differences between adjacent model

parameters:

𝐇 = [

1 0 0 0 ⋯ 0
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ 1

] and 𝐡 = [

0
0
0
0

]

and has variance σℎ
2 ≫ σ𝑑

2 . The problem is solved both using Generalized Least Squares and by

applying the Metropolis-Hastings algorithm to the distribution:

𝑝(𝐦|𝐝𝑜𝑏𝑠) ∝ exp{−½𝐸2 − ½𝐿2} with

𝐸2 = (𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒)T𝐂𝑑
−1(𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒) and 𝐿2 = (𝐡 − 𝐡𝑝𝑟𝑒)T𝐂ℎ

−1(𝐡 − 𝐡𝑝𝑟𝑒)

𝐝𝑝𝑟𝑒 = 𝐆𝐦 and 𝐡𝑝𝑟𝑒 = 𝐇𝐦 and 𝐂𝑑 = σ𝑑
2 𝐈 and 𝐂ℎ = σℎ

2𝐈

The solution, variance and resolution inferred from 106 realizations drawn from this distribution

compare well with a reference solution calculated using Generalized Least Squares (Figure 1).

We then examine a second, weakly nonlinear test scenario, created from the first by adding a

quadratic term to the data equation:

𝑑𝑖 = ∑ 𝐺𝑖𝑗
0 𝑚𝑗

𝑗

+ 𝑞0 ∑ 𝑄𝑖𝑗𝑚𝑗
2

𝑗

The parameter 𝑞0 quantifies the strength of the nonlinear interaction. The elements of 𝐐 are

randomly chosen with |𝑄𝑖𝑗| < max
𝑝,𝑞

(|𝐺𝑝𝑞|). We set 𝑞0 = 0.01, so that the problem is only

weakly nonlinear, with a solution that differs by about 20% from the 𝑞0 = 0 linear solution. A

reference solution is computed using Linearized Generalized Least Squares, utilizing the

gradient:

𝐺𝑖𝑗 ≈
𝜕𝑑𝑖

𝜕𝑚𝑗
= 𝐺𝑖𝑗

0 + 2𝑞0𝑄𝑖𝑗𝑚𝑗

and with a linearized estimate of 𝐂𝑚 and 𝐑𝐆 calculated using the 𝐺𝑖𝑗 of the last iteration. The

solution, variance and resolution inferred from 106 realizations drawn from the distribution

compare well with those calculated from the reference solution.

Figure 1. Results for the linear scenario. (A) The solution 𝐦. (B) The standard deviation 𝜎𝑚 of

the estimated model parameters. (C) The middle row (row 5) of 𝐑G. Results for the Metropolis-

Hastings method (red) compare well with Generalized Least Squares (black).

Figure 2. Results for the weakly nonlinear scenario. (A) The solution 𝐦. (B) The standard

deviation 𝜎𝑚 of the estimated model parameters. (C) The middle row (row 5) of 𝐑G. Results for

the Metropolis-Hastings method (red) compare well with Generalized Least Squares (black).

References

Menke, W., 2018. Geophysical Data Analysis: Discrete Inverse Theory, 4th Edition, Elsevier,

322pp.

MATLAB CODE

clear all;

LINEAR=0;

% data kernel

N=11;

x = [0:N-1]';

M=N;

G = zeros(N,M);

for i=[1:10]

 c = 0.03*i;

 v = exp(-c*x);

 G(i,:)=v'/sum(v);

end

% nonliner term

Q = random('Normal',0,1,N,M);

if(LINEAR)

 q0=0;

else

 q0 = 0.01;

end

% data

mtrue = 0.9*ones(M,1);

dtrue = G*mtrue;

for i=[1:M]

 dtrue(i) = dtrue(i) + q0*mtrue'*(squeeze(Q(:,i)).*mtrue);

end

sigmad = 1e-2;

dobs = dtrue + random('Normal',0,sigmad,N,1);

Cd = (sigmad^2)*eye(N,N);

Cdi = (sigmad^(-2))*eye(N,N);

Cdi2 = (sigmad^(-1))*eye(N,N);

% prior information

K=M;

H = toeplitz([1; -1; zeros(K-2,1)], [1, zeros(1,M-1)]);

h = H*mtrue;

sigmah = 1;

Ch = (sigmah^2)*eye(K,K);

Chi = (sigmah^(-2))*eye(K,K);

Chi2 = (sigmah^(-1))*eye(K,K);

% Generalized least squared on the data kernel only

F = [Cdi2*G; Chi2*H];

f = [Cdi2*dobs; Chi2*h];

Ai = inv(F'*F);

mest = Ai*(F'*f);

Cm = Ai;

R = Ai*G'*Cdi*G;

% solution of the nonlinear problem by Newton's Method

mg = mest;

fi = [Cdi2*dobs; Chi2*h];

for itt=[1:50]

 dg = G*mg;

 Gi = G;

 for i=[1:M]

 dg(i) = dg(i) + q0*mg'*(squeeze(Q(:,i)).*mg);

 Gi(i,:) = Gi(i,:) + (2*q0*squeeze(Q(:,i)).*mg)';

 end

 Df = fi - [Cdi2*dg; Chi2*H*mg];

 Fi = [Cdi2*Gi; Chi2*H];

 Dm = (F'*F)\(F'*Df);

 mg = mg + Dm;

end

% recompute data and gradient

dg = G*mg;

Gi = G;

for i=[1:M]

 dg(i) = dg(i) + q0*mg'*(squeeze(Q(:,i)).*mg);

 Gi(i,:) = Gi(i,:) + (2*q0*squeeze(Q(:,i)).*mg)';

end

% solution, covariance, resolutin

mNM = mg;

Fi = [Cdi2*Gi; Chi2*H];

CmNM = inv(Fi'*Fi);

RNM = eye(M,M) - CmNM*H'*Chi*H;

% [mtrue, mest, mg]

% [dobs, dg, dobs-dg]

mquality=(mtrue-mg)'*(mtrue-mg)/(mtrue'*mtrue);

dquality=(dobs-dg)'*(dobs-dg)/(dobs'*dobs);

fprintf('Difference of nonlinear soln from linear soln %f\n', (mg-mest)'*(mg-

mest)/(mest'*mest));

fprintf('Relative error of nonlinear soln %f\n', mquality);

fprintf('Relative error of nonlinear fit to data %f\n', dquality);

if(dquality > 0.05)

 % stop if failed to fit the data adequately

 xxx

end

%statistics

Nadopts=0;

counts=0;

msum = zeros(M,1);

mprod = zeros(M,M);

% starting guess

m = random('Normal',mNM,0.1,M,1);

dpre = G*m;

for i=[1:M]

 dpre(i) = dpre(i) + q0*m'*(squeeze(Q(:,i)).*m);

end

ed = Cdi2*(dobs-dpre);

eh = Chi2*(h-H*m);

E = ed'*ed + eh'*eh;

logp = -0.5*E;

figure(1);

clf;

subplot(3,1,1);

hold on;

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

xlabel('x');

ylabel('m');

axis([x(1), x(end), -5, 5]);

plot(x,mNM,'k-','LineWidth',2);

subplot(3,1,2);

hold on;

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

xlabel('x');

ylabel('sigma m');

axis([x(1), x(end), -sigmah, sigmah]);

plot(x,sqrt(diag(CmNM)),'k-','LineWidth',2);

subplot(3,1,3);

hold on;

set(gca,'LineWidth',2);

set(gca,'FontSize',14);

xlabel('x');

ylabel('R(5,:)');

axis([x(1), x(end), -1, 1]);

plot(x,RNM(5,:)','k-','LineWidth',2);

% iterations

Nr = 1000000;

%Nr = 100000;

Ntrain = floor(Nr/10);

for i=[1:Nr]

 % successor state

 ms = m + random('Normal',0,0.1,M,1);

 ds = G*ms;

 for ii=[1:M]

 ds(ii) = ds(ii) + q0*ms'*(squeeze(Q(:,ii)).*ms);

 end

 eds = Cdi2*(dobs-ds);

 ehs = Chi2*(h-H*ms);

 Es = eds'*eds + ehs'*ehs;

 logps = -0.5*Es;

 test = exp(logps - logp);

 % MH test for adopting the successor

 adopt = 0;

 if(test>=1)

 adopt=1;

 else

 test2 = random('uniform',0,1,1,1);

 if(test>test2)

 adopt=1;

 end

 end

 if(adopt)

 m = ms;

 ed = eds;

 eh = ehs;

 E = Es;

 logp = logps;

 Nadopts = Nadopts+1;

 end

 % statistics

 if(i>Ntrain)

 counts = counts+1;

 msum = msum + m;

 mprod = mprod + m*m';

 end

end

mmean = msum / counts;

CmMH = zeros(M,M);

for ii = [1:M]

for jj = [1:M]

 CmMH(ii,jj) = (mprod(ii,jj)-msum(ii)*mmean(jj)-

mmean(ii)*msum(jj)+counts*mmean(ii)*mmean(jj))/(counts-1);

end

end

RMH = eye(M,M) - CmMH*H'*Chi*H;

subplot(3,1,1);

plot(x,mmean,'r-','LineWidth',2);

subplot(3,1,2);

plot(x,sqrt(diag(CmMH)),'r-','LineWidth',2);

subplot(3,1,3);

plot(x,RMH(5,:)','r-','LineWidth',2);

