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This derivation follows up on the ideas of Menke (2018, section 5.3).  We start by examining a 

linear least squares problem with data 𝐝 = 𝐆𝐦 (with covariance 𝐂𝑑) and prior information 𝐡 =

𝐇𝐦 (with covariance 𝐂ℎ).  Generalized Least Squares gives the estimated model parameters 

𝐦est and posterior covariance 𝐂𝑚 as: 

𝐦est = 𝐀−1[𝐆T𝐂d
−1𝐝𝑜𝑏𝑠 + 𝐇T𝐂h

−1𝐡] 

𝐂𝑚 =  𝐀−1    with    𝐀 ≡ [𝐆T𝐂d
−1𝐆 + 𝐇T𝐂h

−1𝐇] 

(1) 

As Menke (2018) points out, the problem is perfectly resolved as long as 𝐀−1exists; that is 𝐑 =

𝐈.  Nevertheless, a non-trivial resolution matrix can be constructed for deviations ∆𝐦 = 𝐦 − 𝐦H 

of the model parameters away from the prior solution 𝐦H. By prior solution, we mean the 

solution implied by the prior information, acting alone; that is: 𝐦H = [𝐇T𝐂h
−1𝐇]−𝟏𝐇T𝐂h

−1𝐡, 

which has covariance 𝐂𝑚
H = [𝐇T𝐂h

−1𝐇]−𝟏. (Menke (2018) recommends adding very weak 

smallness prior information to the problem in cases where the prior information is not complete, 

so that [𝐇T𝐂h
−1𝐇]−𝟏 always exists). The resolution matrix 𝐑G for ∆𝐦 is: 

 

𝐑G ≡  𝐀−1𝐆T𝐂d
−1𝐆 = 𝐀−1(𝐀 − 𝐇T𝐂h

−1𝐇) = 𝐈 − 𝐀−1𝐇T𝐂h
−1𝐇 

𝐑G = 𝐈 − 𝐂𝑚𝐇T𝐂h
−1𝐇 = 𝐈 − 𝐂𝑚[𝐂𝒎

H ]−𝟏 

(2) 

Note that the resolution is exactly zero when 𝐂𝑚 = 𝐂𝑚
H . This is the case where the data 

contributes no information, so that the posterior covariance of the model parameters is just their 

prior covariance. 

The resolution 𝐑G = 𝐈 − 𝐂𝑚𝐇T𝐂h
−1𝐇 can be constructed from the matrices 𝐂𝑚, 𝐇 and 𝐂ℎ.  I 

propose that this formula be applied to any problem for which: (1) an estimate of the posterior 

covariance matrix 𝐂𝑚 is available, and (2) the prior information is linear (with known 𝐇 and 𝐂ℎ). 

The second criterion is not especially restrictive, since many problems can be adequately 

regularized with linear information, such a small solution size, small first or second derivative, 

etc.  The approximation is accurate as long as the underlying problem has an error surface that is 

approximately quadratic near its minimum. 

Now suppose one has a large number, say 𝐿, of solutions 𝐦(𝑖) that sample a posterior probability 

distribution 𝑝(𝐦|𝐝obs) (constructed, say, using the Metropolis-Hastings algorithm).  The mean 

𝐦̅ and covariance 𝐂𝑚 can be estimated as the sample mean and covariance:  

 



𝐦̅𝒆𝒔𝒕 =
1

𝐿
∑ 𝐦(𝑖)

𝑖

    and    [𝐂𝑚
𝑒𝑠𝑡]𝑗𝑘 =

1

𝐿
∑(𝑚𝑗

(𝑖)
− 𝑚̅𝑗)(𝑚𝑘

(𝑖)
− 𝑚̅𝑘)

𝑖

 

(3) 

And the resolution as: 

𝐑G ≈ 𝐈 − 𝐂𝑚
𝑒𝑠𝑡𝐇T𝐂h

−1𝐇 

(4) 

 

In cases where 𝐇 and 𝐂ℎ have not been explicitly stated, the Metropolis-Hastings algorithm may 

be used to sample the prior distribution, acting alone, and Equation 3 used to estimate 𝐂𝑚
H . The 

resolution is then given by: 

𝐑G ≈ 𝐈 − 𝐂𝑚
𝑒𝑠𝑡[𝐂𝑚

H𝑒𝑠𝑡]−1 

(4) 

This procedure may yield good results even when the prior constraints are nonlinear, as long as 

the error surface for the prior information is approximately quadratic near its minimum. 

We now examine a linear test scenario in which 𝑀 = 11 model parameters are evenly spaced in 

an auxiliary parameter 𝑥. The data kernel 𝐆 has 𝑁 = 11 rows, each of which exponentially 

decline with column number: 

𝑑𝑖 = ∑ 𝐺𝑖𝑗
0 𝑚𝑗

𝑗

     with     𝐺𝑖𝑗
0 ∝ exp{−𝑐𝑖𝑥𝑗} 

Here 𝑐𝑖 are decay rates that increase with row number 𝑖.  The true model parameters are 𝑚𝑖 = 1 

and the observed data 𝐝𝑜𝑏𝑠 are computed from the true data by adding Normally-distributed, 

uncorrelated noise with zero mean and variance σ𝑑
2 .  The prior information is taken to be 

smallness of the first model parameter, and smallness of differences between adjacent model 

parameters: 

𝐇 = [

1 0 0 0 ⋯ 0
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ 1

]    and   𝐡 = [

0
0
0
0

] 

and has variance σℎ
2 ≫ σ𝑑

2 .  The problem is solved both using Generalized Least Squares and by 

applying the Metropolis-Hastings algorithm to the distribution: 

𝑝(𝐦|𝐝𝑜𝑏𝑠) ∝ exp{−½𝐸2 − ½𝐿2}     with 

𝐸2 = (𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒)T𝐂𝑑
−1(𝐝𝑜𝑏𝑠 − 𝐝𝑝𝑟𝑒)    and    𝐿2 = (𝐡 − 𝐡𝑝𝑟𝑒)T𝐂ℎ

−1(𝐡 − 𝐡𝑝𝑟𝑒)     

𝐝𝑝𝑟𝑒 = 𝐆𝐦    and    𝐡𝑝𝑟𝑒 = 𝐇𝐦    and  𝐂𝑑 = σ𝑑
2 𝐈   and 𝐂ℎ = σℎ

2𝐈 



The solution, variance and resolution inferred from 106 realizations drawn from this distribution 

compare well with a reference solution calculated using Generalized Least Squares (Figure 1). 

We then examine a second, weakly nonlinear test scenario, created from the first by adding a 

quadratic term to the data equation: 

 

𝑑𝑖 = ∑ 𝐺𝑖𝑗
0 𝑚𝑗

𝑗

+ 𝑞0 ∑ 𝑄𝑖𝑗𝑚𝑗
2

𝑗

 

The parameter 𝑞0 quantifies the strength of the nonlinear interaction.  The elements of 𝐐 are 

randomly chosen with |𝑄𝑖𝑗| < max
𝑝,𝑞

(|𝐺𝑝𝑞|). We set 𝑞0 = 0.01, so that the problem is only 

weakly nonlinear, with a solution that differs by about 20% from the 𝑞0 = 0 linear solution. A 

reference solution is computed using Linearized Generalized Least Squares, utilizing the 

gradient: 

𝐺𝑖𝑗 ≈
𝜕𝑑𝑖

𝜕𝑚𝑗
= 𝐺𝑖𝑗

0 + 2𝑞0𝑄𝑖𝑗𝑚𝑗 

and with a linearized estimate of 𝐂𝑚 and 𝐑𝐆 calculated using the 𝐺𝑖𝑗 of the last iteration. The 

solution, variance and resolution inferred from 106 realizations drawn from the distribution 

compare well with those calculated from the reference solution. 

 

 

Figure 1. Results for the linear scenario. (A) The solution 𝐦. (B) The standard deviation 𝜎𝑚 of 

the estimated model parameters.  (C) The middle row (row 5) of 𝐑G.  Results for the Metropolis-

Hastings method (red) compare well with Generalized Least Squares (black). 



 

Figure 2. Results for the weakly nonlinear scenario. (A) The solution 𝐦. (B) The standard 

deviation 𝜎𝑚 of the estimated model parameters.  (C) The middle row (row 5) of 𝐑G.  Results for 

the Metropolis-Hastings method (red) compare well with Generalized Least Squares (black). 
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MATLAB CODE 

clear all; 

 

LINEAR=0; 

 

% data kernel 

N=11; 

x = [0:N-1]'; 

M=N; 

G = zeros(N,M); 

for i=[1:10] 

    c = 0.03*i; 

    v = exp(-c*x); 

    G(i,:)=v'/sum(v); 

end 

 

% nonliner term 

Q = random('Normal',0,1,N,M); 

if( LINEAR ) 

    q0=0; 

else 

    q0 = 0.01; 

end 

 

% data 



mtrue = 0.9*ones(M,1); 

dtrue = G*mtrue; 

for i=[1:M] 

    dtrue(i) = dtrue(i) + q0*mtrue'*(squeeze(Q(:,i)).*mtrue); 

end 

 

sigmad = 1e-2; 

dobs = dtrue + random('Normal',0,sigmad,N,1); 

Cd = (sigmad^2)*eye(N,N); 

Cdi = (sigmad^(-2))*eye(N,N); 

Cdi2 = (sigmad^(-1))*eye(N,N); 

 

% prior information 

K=M; 

H = toeplitz( [1; -1; zeros(K-2,1)], [1, zeros(1,M-1)] ); 

h = H*mtrue; 

sigmah = 1; 

Ch = (sigmah^2)*eye(K,K); 

Chi = (sigmah^(-2))*eye(K,K); 

Chi2 = (sigmah^(-1))*eye(K,K); 

 

% Generalized least squared on the data kernel only 

F = [Cdi2*G; Chi2*H]; 

f = [Cdi2*dobs; Chi2*h]; 

Ai = inv(F'*F); 

mest = Ai*(F'*f); 

Cm = Ai; 

R = Ai*G'*Cdi*G; 

 

% solution of the nonlinear problem by Newton's Method 

mg = mest; 

fi = [Cdi2*dobs; Chi2*h]; 

for itt=[1:50] 

    dg = G*mg; 

    Gi = G; 

    for i=[1:M] 

        dg(i) =   dg(i)   + q0*mg'*(squeeze(Q(:,i)).*mg); 

        Gi(i,:) = Gi(i,:) + (2*q0*squeeze(Q(:,i)).*mg)'; 

    end 

    Df = fi - [Cdi2*dg; Chi2*H*mg]; 

    Fi = [Cdi2*Gi; Chi2*H]; 

    Dm = (F'*F)\(F'*Df); 

    mg = mg + Dm; 

end 

 

% recompute data and gradient 

dg = G*mg; 

Gi = G; 

for i=[1:M] 

    dg(i) = dg(i) + q0*mg'*(squeeze(Q(:,i)).*mg); 

    Gi(i,:) = Gi(i,:) + (2*q0*squeeze(Q(:,i)).*mg)'; 

end 

 

% solution, covariance, resolutin 

mNM = mg; 

Fi = [Cdi2*Gi; Chi2*H]; 

CmNM = inv(Fi'*Fi); 

RNM = eye(M,M) - CmNM*H'*Chi*H;  

 

% [mtrue, mest, mg] 

% [dobs, dg, dobs-dg]   

mquality=(mtrue-mg)'*(mtrue-mg)/(mtrue'*mtrue); 

dquality=(dobs-dg)'*(dobs-dg)/(dobs'*dobs); 



fprintf('Difference of nonlinear soln from linear soln %f\n', (mg-mest)'*(mg-

mest)/(mest'*mest) ); 

fprintf('Relative error of nonlinear soln %f\n', mquality); 

fprintf('Relative error of nonlinear fit to data %f\n', dquality); 

 

if( dquality > 0.05 ) 

    % stop if failed to fit the data adequately 

    xxx 

end 

 

%statistics 

Nadopts=0; 

counts=0; 

msum = zeros(M,1); 

mprod = zeros(M,M); 

 

% starting guess 

m = random('Normal',mNM,0.1,M,1); 

dpre = G*m; 

for i=[1:M] 

    dpre(i) = dpre(i) + q0*m'*(squeeze(Q(:,i)).*m); 

end 

ed = Cdi2*(dobs-dpre); 

eh = Chi2*(h-H*m); 

E = ed'*ed + eh'*eh; 

logp = -0.5*E; 

 

figure(1); 

clf; 

 

subplot(3,1,1); 

hold on; 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('x'); 

ylabel('m'); 

axis([x(1), x(end), -5, 5 ]); 

plot(x,mNM,'k-','LineWidth',2); 

 

subplot(3,1,2); 

hold on; 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('x'); 

ylabel('sigma m'); 

axis([x(1), x(end), -sigmah, sigmah ]); 

plot(x,sqrt(diag(CmNM)),'k-','LineWidth',2); 

 

subplot(3,1,3); 

hold on; 

set(gca,'LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('x'); 

ylabel('R(5,:)'); 

axis([x(1), x(end), -1, 1 ]); 

plot(x,RNM(5,:)','k-','LineWidth',2); 

 

% iterations 

Nr = 1000000; 

%Nr = 100000; 

Ntrain = floor(Nr/10); 

for i=[1:Nr] 

 



    % successor state 

    ms = m + random('Normal',0,0.1,M,1); 

    ds = G*ms; 

    for ii=[1:M] 

        ds(ii) = ds(ii) + q0*ms'*(squeeze(Q(:,ii)).*ms); 

    end 

    eds = Cdi2*(dobs-ds); 

    ehs = Chi2*(h-H*ms); 

    Es = eds'*eds + ehs'*ehs; 

    logps = -0.5*Es; 

    test = exp(logps - logp); 

    

    % MH test for adopting the successor 

    adopt = 0; 

    if( test>=1 ) 

        adopt=1; 

    else 

        test2 = random('uniform',0,1,1,1); 

        if( test>test2 ) 

            adopt=1; 

        end 

    end 

    if( adopt ) 

        m = ms; 

        ed = eds; 

        eh = ehs; 

        E = Es; 

        logp = logps; 

        Nadopts = Nadopts+1; 

    end 

     

    % statistics 

    if( i>Ntrain ) 

        counts = counts+1; 

        msum = msum + m; 

        mprod = mprod + m*m'; 

    end 

 

end 

 

mmean = msum / counts; 

 

CmMH = zeros(M,M); 

for ii = [1:M] 

for jj = [1:M] 

     CmMH(ii,jj) = (mprod(ii,jj)-msum(ii)*mmean(jj)-

mmean(ii)*msum(jj)+counts*mmean(ii)*mmean(jj))/(counts-1); 

end 

end 

 

RMH = eye(M,M) - CmMH*H'*Chi*H;  

 

subplot(3,1,1); 

plot(x,mmean,'r-','LineWidth',2); 

subplot(3,1,2); 

plot(x,sqrt(diag(CmMH)),'r-','LineWidth',2); 

subplot(3,1,3); 

plot(x,RMH(5,:)','r-','LineWidth',2); 

 


