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Recipe for a Dirichlet Trade-Off Curve 

 Step 1. Estimate the mean model 𝐦 (say of length 𝑀) and its covariance 𝐂𝑚 of the 

distribution 𝑝(𝐦|𝐝obs), by taking the sample mean and sample covariance of the ensemble of 

solutions drawn from that distribution. 

 Step 2. Estimate the mean model 𝐦(A) (of length 𝑀) and its covariance 𝐂𝑚
(A)

 of the 

distribution 𝑝𝐴(𝐦), by taking the sample mean and sample covariance of the ensemble of 

solutions drawn from that distribution. 

 Step 3. Calculate the eigenvalues 𝜆(𝑖) of 𝐂𝑚 and sort them into increasing size. 

 Step 4. Let 𝑁 be an integer in the range 1 ≤ 𝑁 ≤ 𝑀 .  For each value of 𝑁, calculate the 

Direchlet spread of resolution 𝐽(𝑁) and the size of variance 𝐾(𝑁): 

𝐽(𝑁) = 𝑀 − 𝑁    and    𝐾(𝑁) = ∑ 𝜆(𝑖)

𝑁

𝑖=1

 

 Step 5. The trade-off curve is 𝐾(𝑁) plotted against 𝐽(𝑁). 

 Step 6. For comparison, calculate the size of the prior variance, 𝐾(𝐴) = tr(𝐂𝑚
A ) and plot 

it, too. 

 Step 7. Identify the values of 𝑁 for which 𝐾(𝑁) > 𝐾(𝐴). They correspond to localized 

averages with variances controlled by the observed data 𝐝obs; the variances of the others are 

being controlled by the prior information. 

 Step 8: For any specific value of 𝑁, construct a diagonal matrix 𝚲(𝑁) containing the 𝑁 

smallest eigenvalues 𝜆(𝑖) of 𝐂𝑚 and a matrix 𝐕(𝑁) containing the 𝑁 corresponding eigenvectors.  

The resolution matrix is 𝐑(𝑁) = 𝐕(𝑁)𝐕(𝑁)𝑇; the localized averages are 𝐦(𝑁) = 𝐑(𝑁)𝐦; and the 

covariance of the localized averages is 𝐂𝑚
(𝑁)

= 𝐕(𝑁)𝚲(𝑁)𝐕(𝑁)T. 

Recipe for the Resolution of Deviation with Respect to the Prior Model 

 Step 1. Estimate, as before, the mean model 𝐦 (say of length 𝑀) and covariance 𝐂𝑚 of 

the distribution 𝑝(𝐦|𝐝obs), by taking the sample mean and sample covariance of the ensemble 

of solutions drawn from that distribution. 

 Step 2. Estimate, as before, the mean model 𝐦(A) (of length 𝑀) and covariance 𝐂𝑚
(A)

 of 

the distribution 𝑝𝐴(𝐦), by taking the sample mean and sample covariance of the ensemble of 

solutions drawn from that distribution. 

 Step 3: Calculate the resolution matrix 𝐑G for deviations from the prior model as: 

 

𝐑G = 𝐈 − 𝐂𝑚[𝐂𝒎
(𝐴)

]
−𝟏

 

 



Derivation 

1. Estimates of Covariance from Ensembles. Suppose one has a large number, say 𝐿, of 

solutions 𝐦(𝑖) (each of length 𝑀) that sample a posterior probability distribution 𝑝(𝐦|𝐝𝑜𝑏𝑠) =

𝑝(𝐝𝑜𝑏𝑠|𝐦) 𝑝𝐴(𝐦)  (constructed, say, using the Metropolis-Hastings algorithm).  The model 𝐦 

and its covariance 𝐂𝑚 can be estimated as the sample mean and covariance:  

𝐦 ≈
1

𝐿
∑ 𝐦(𝑖)

𝑖

    and    [𝐂𝑒𝑠𝑡]𝑗𝑘 ≈
1

𝐿
∑(𝑚𝑗

(𝑖)
− �̅�𝑗)(𝑚𝑘

(𝑖)
− �̅�𝑘)

𝑖

 

(1) 

Note that these quantities can be computed by accumulating various sums and products during 

the iterative Metropolis-Hastings process. 

counts=0; 

msum = zeros(M,1); 

mprod = zeros(M,M); 

for i=[1:L] 

    % compute a member, m, of the ensemble here 

    % where m is a vector of M model parameters 

    counts = counts+1; 

    msum = msum + m; 

    mprod = mprod + m*m'; 

end 

end 

 

mmean = msum / counts; 

Cm = zeros(M,M); 

for ii = [1:M] 

for jj = [1:M] 

     Cm(ii,jj) = (mprod(ii,jj)-msum(ii)*mmean(jj)-

mmean(ii)*msum(jj)+counts*mmean(ii)*mmean(jj))/(counts-1); 

end 

end 

 

Furthermore, if the Metropolis-Hastings process is repeat again to sample just the prior 

distribution 𝑝𝐴(𝐦), the prior model 𝐦(A) and covariance 𝐂𝑚
(A)

 can be estimated in similar 

manner. However, if 𝑝𝐴(𝐦) is Normal and embodies linear prior information of the form 𝐡 =
𝐇𝐦 (with covariance 𝐂ℎ), then these quantities can be estimates more efficiently as 𝐦(𝐴) =

[𝐇T𝐂h
−1𝐇]−1𝐇T𝐂h

−1𝐡 (with covariance 𝐂𝑚
(A)

= [𝐇T𝐂h
−1𝐇]−1). 

  (2) 

Linear Combinations of Model Parameters with Small Variance. Suppose that 𝐂𝑚 has 

eigenvalue decomposition 𝐕𝚲𝐕T. Here 𝚲 is a diagonal matrix of eigenvalues 𝜆(𝑖) and 𝐕 and is a 

matrix whose columns are orthonormal eigenvectors 𝐯(𝑖). The eigenvalues are all non-negative, 

because they represent variances. Now consider the “data” 𝐝 derived from the model parameters 

via 𝐝 = 𝐆𝐦 with 𝐆 = 𝐕T.  The covariance 𝐂𝑚 of these data are uncorrelated with covariance 𝚲: 

𝐂𝑑 = 𝐆𝐂𝑚𝐆T = 𝐕T𝐕𝚲𝐕T𝐕 = 𝚲 



(3) 

(since 𝐕T𝐕 = 𝐈). Now suppose that we restrict ourselves to the 𝑁 ≤ 𝑀 eigenvalues that are equal 

to or below a threshold; that is 𝜆(𝑖) ≤ 𝜎2 and group them into an eigenvalue matrix 𝚲(𝑁). The 

corresponding eigenvectors 𝐕(𝑁) satisfy 𝐕(𝑁)𝑇𝐕(𝑁) = 𝐈; however, in general, 𝐕(𝑁)𝐕(𝑁)𝑇 ≠ 𝐈, 

except when 𝑁 = 𝑀. The 𝑁 data satisfy 𝐝(𝑁) = 𝐆(𝑁)𝐦, and all have variances 𝜎𝑑𝑖

2 ≤ 𝜎2.  These 

data represent the linear combinations of the model parameters with the acceptable variances (in 

the sense of being at or below the threshold).  

Dirichlet Resolution Case. Now suppose that we invert these data using the minimum length 

method: 

𝐦(𝑁) =  𝐆−𝑔𝐝(𝑁)    with   𝐆−𝑔 ≡  𝐆(𝑁)𝑇[𝐆(𝑁)𝐆(𝑁)𝑇]
−1

= 𝐕(𝑁) 

(4) 

The last equality follows from 𝐆(𝑁)𝐆(𝑁)𝑇 = 𝐕(𝑁)𝑇𝐕(𝑁) = 𝐈.  We construct a one-parameter 

family of solutions 𝐦(𝑁),  together with their covariance 𝐂𝑚
(𝑁)

 and resolution 𝐑(𝑁), by varying 𝑁 

in the range  1 ≤ 𝑁 ≤ 𝑀: 

𝐦(𝑁) = 𝐆−𝑔𝐝(𝑁) = 𝐕(𝑁)𝐕(𝑁)𝑇𝐦 = 𝐑(𝑁)𝐦   with    𝐑(𝑁) ≡ 𝐕(𝑁)𝐕(𝑁)𝑇 

𝐂𝑚
(𝑁)

= 𝐆−𝑔𝐂𝑑𝐆−𝑔T = 𝐕(𝑁)𝚲(𝑁)𝐕(𝑁)T 

(5) 

The elements of 𝐦(𝑁) (for fixed 𝑁) can be understood as weighted averages of 𝐦, where the 

weights are given the resolution matrix 𝐑. The covariance of these weighted averages is given by 

𝐂𝑚
(𝑁)

. The 𝑁 = 𝑀 case just returns the original model parameter and original covariance: 

𝐦(𝑀) = 𝐆−𝑔𝐝(𝑀) = 𝐕(𝑀)𝐕(𝑀)𝑇𝐦 = 𝐦 

𝐂𝑚
(𝑀)

= 𝐆−𝑔𝐂𝑑𝐆−𝑔T = 𝐕(𝑀)𝚲(𝑀)𝐕(𝑀)T = 𝐂𝑚 

𝐑(𝑀) = 𝐈 

(6) 

The other cases represent weighted averages that have different (and as we will show, poorer) 

resolution. 

The minimum length solution is known to minimize the Direchlet spread 𝐽(𝑁) of resolution 

(Menke 2018), defined as: 



𝐽(𝑁) = ∑ ∑ 𝐷𝑖𝑗
2

𝑗𝑖

= ∑ [∑ 𝐷𝑗𝑖
T𝐷𝑖𝑗

𝑖

]

𝑗

= tr(𝐃T𝐃)     with    𝐃 = 𝐑(𝑁) − 𝐈 

(7) 

The measure 𝐽(𝑁) quantifies how close the resolution is to the perfect resolution case, for which  

𝐑(𝑁) = 𝐈 and 𝐽(𝑁) = 0. Substituting 𝐕(𝑁)𝐕(𝑁)𝑇 for 𝐑(𝑁) yields: 

𝐃T𝐃 = (𝐕(𝑁)𝐕(𝑁)𝑇 − 𝐈)
T

(𝐕(𝑁)𝐕(𝑁)𝑇 − 𝐈) = 𝐕(𝑁)𝐕(𝑁)𝑇𝐕(𝑁)𝐕(𝑁)𝑇 − 2𝐕(𝑁)𝐕(𝑁)𝑇 + 𝐈 = 

= 𝐕(𝑁)𝐕(𝑁)𝑇 − 2𝐕(𝑁)𝐕(𝑁)𝑇 + 𝐈 = 𝐈 − 𝐕(𝑁)𝐕(𝑁)𝑇 

(8) 

so that 

𝐽(𝑁) = tr(𝐃T𝐃) = tr(𝐈) − tr(𝐕(𝑁)𝐕(𝑁)𝑇) = 𝑀 − 𝑁 

(9) 

The last equality follows from: 

tr(𝐈) = 𝑁    and   tr(𝐕(𝑁)𝐕(𝑁)𝑇) = ∑ ∑ 𝑣𝑗
(𝑖)

𝑣𝑗
(𝑖)

𝑗𝑖

= ∑|𝐯(𝑖)|
2

= 𝑁

𝑁

𝑖=1

 

(10) 

Note that the spread function 𝐽(𝑁) monotonically decreases with increasing 𝑁, and is zero when 

𝑁 = 𝑀. 

While the 𝑁 = 𝑀 case has perfect resolution, it does not necessarily have acceptably small 

variance. The size 𝐾(𝑁) of the variance can be quantified as: 

𝐾(𝑁) = tr(𝐂𝑚
(𝑁)

) = tr(𝐕(𝑁)𝚲(𝑁)𝐕(𝑁)T) = tr(𝚲(𝑁)) = ∑[𝚲(𝑁)]
𝑖𝑖

𝑁

𝑖=1

 

(11) 

Here we have used the fact that the trace is invariant under orthogonal transformations. Note that 

𝐾(𝑁) < 𝑁𝜎2, since each λ(𝑖) < 𝜎2. The size 𝐾(𝑁) monotonically increases with increasing 𝑁 

since the eigenvalues, being variances, are all positive. 



The functions 𝐽(𝑁) and 𝐾(𝑁) define the trade-off curve 𝐾(𝐽). Adding data increases 𝑁 and moves 

the solution along this curve. The spread 𝐽(𝑁)  of resolution monotonically decreases and the size 

𝐾(𝑁) of variance monotonically increases.  Finding a solution with both arbitrarily small spread 

of resolution and arbitrarily small size of variance is impossible; at best, one can find a point 

along the curve where the two have acceptable values. 

The size of the prior covariance, 𝐾(𝐴) = tr(𝐂𝑚
A ), can be used as a reference value against which 

to judge a particular choice of 𝑁. Only the cases for which 𝐾(𝑁) < 𝐾(𝐴) have a variance 

controlled by the data (as contrasted to the prior information). 

Backus-Gilbert Resolution Case. A criticism of the Dirichlet measure is that it does not 

penalize distance from the main diagonal.  The Backus-Gilbert measure weights by this distance 

and produces a better estimate of the degree to which resolution is localized.  It is defined as: 

𝐽(𝑁) = ∑ ∑ 𝑤(𝑙, 𝑘)𝑅𝑖𝑗
(𝑁)

𝑅𝑖𝑗
(𝑁)

𝑀

𝑗=1

𝑁

𝑖=1

    with the constraint      ∑ 𝑅𝑖𝑗
(𝑁)

= 1

𝑴

𝑗=1

  for all 𝑖 

(12) 

Here 𝑤(𝑙, 𝑘) is a penalty function that quantifies the physical distance between model parameters 

𝑚𝑙 and 𝑚𝑘 and that satisfied 𝑤(𝑙, 𝑙) = 0 and 𝑤(𝑙, 𝑘) > 0 for 𝑙 ≠ 𝑘. For a one-dimensional 

organization of model parameters along the 𝑥-axis, the function 𝑤(𝑙, 𝑘) = (𝑘 − 𝑙)2 usually 

suffices. Backus and Gilbert (1967) showed that the solution to this problem is: 

𝐺𝑘𝑙
−𝑔

=
∑ 𝑢𝑖 [{𝐒(𝑘)}

−1
]

𝑖𝑙
𝑖

∑ ∑ 𝑢𝑖𝑖𝑖 [{𝐒(𝑘)}−1]𝑖𝑗𝑢𝑗
    with   𝑢𝑗 =  ∑ 𝐺𝑗𝑘

(𝑁)

𝑖

 

and   [𝐒(𝑘)]
𝑖𝑗

= ∑ 𝑤(𝑙, 𝑘) 𝐺𝑖𝑙
(𝑁)

𝐺𝑗𝑙
(𝑁)

𝑙

 

(13) 

This form of the generalized inverse can be used in place of the minimum length generalized 

inverse 𝐆−𝑔 =  𝐆(𝑁)𝑇[𝐆(𝑁)𝐆(𝑁)𝑇]
−1

.  However, the spread or resolution 𝐽(𝑁) must be evaluated 

using Equation (12) and the size of variance by 𝐾(𝑁) = tr(𝐆−𝑔𝚲(𝑁)𝐆−𝑔T), since the 

simplifications developed for the Dirichlet case do not apply. 

Resolution of Deviations from the prior model. Consider a linear least squares problem with 

data equation 𝐝 = 𝐆𝐦 (with covariance 𝐂𝑑) and prior information equation 𝐡 = 𝐇𝐦 (with 

covariance 𝐂ℎ).  Generalized Least Squares gives the estimated model parameters 𝐦est and 

posterior covariance 𝐂𝑚 as: 



𝐦est = 𝐀−1[𝐆T𝐂d
−1𝐝𝑜𝑏𝑠 + 𝐇T𝐂h

−1𝐡] 

𝐂𝑚 =  𝐀−1    with    𝐀 ≡ [𝐆T𝐂d
−1𝐆 + 𝐇T𝐂h

−1𝐇] 

(14) 

As Menke (2018) points out, the problem is perfectly resolved as long as 𝐀−1exists; that is 𝐑 = 𝐈 

whenever the data and the prior information, taken together, are sufficient to specify a solution.  

This is the 𝑁 = 𝑀 case we have been discussing above. Nevertheless, a non-trivial resolution 

matrix can be constructed for deviations ∆𝐦 = 𝐦 − 𝐦(𝐴) of the model parameters away from 

the prior solution 𝐦(𝐴). By prior solution, we mean the solution implied by the prior information, 

acting alone; that is: 𝐦(𝐴) = [𝐇T𝐂h
−1𝐇]−1𝐇T𝐂h

−1𝐡, which has covariance 𝐂𝑚
(A)

= [𝐇T𝐂h
−1𝐇]−1. 

(Menke (2018) recommends adding very weak smallness prior information to the problem in 

cases where the prior information is not complete, so that [𝐇T𝐂h
−1𝐇]−𝟏 always exists). The 

resolution matrix 𝐑G for ∆𝐦 is: 

𝐑G ≡  𝐀−1𝐆T𝐂d
−1𝐆 = 𝐀−1(𝐀 − 𝐇T𝐂h

−1𝐇) = 𝐈 − 𝐀−1𝐇T𝐂h
−1𝐇 

𝐑G = 𝐈 − 𝐂𝑚𝐇T𝐂h
−1𝐇 = 𝐈 − 𝐂𝑚[𝐂𝒎

(𝐴)
]

−𝟏

 

(15) 

Note that the resolution is exactly zero when 𝐂𝑚 = 𝐂𝑚
(𝐴)

. This is the case where the data 

contributes no information, so that the posterior covariance of the model parameters is just their 

prior covariance. 

Example. We examine a weakly nonlinear test scenario, with 𝑀 = 11 model parameters 

uniformly spaced along the 𝑥-axis, with true values 𝑚𝑖
𝑡𝑟𝑢𝑒 = 1. The use the data equation: 

 

𝑑𝑖 = ∑ 𝐺𝑖𝑗
0 𝑚𝑗

𝑗

+ 𝑞0 ∑ 𝑄𝑖𝑗𝑚𝑗
2

𝑗

 

(16) 

The matrices 𝐺𝑖𝑗
(0)

= 𝑐(𝑖) exp{−𝑐(𝑖)(𝑗 − 1)} and 𝑄𝑖𝑗 = 𝑑𝑗
(𝑖)

exp{−𝑑𝑗
(𝑖)(𝑗 − 1)} are chosen to 

exponentially decay with column number 𝑗, with decay constants that increase with row number 

𝑖 according to 𝑐(𝑖) = 0.03 × 𝑖 and 𝑑(𝑖) = 0.03 × (𝑖 − ½). The problem is made weakly 

nonlinear by setting 𝑞0 = 0.1, leading to a solution that differs by about 10% from the 𝑞0 = 0 

linear solution. The p.d.f. 𝑝(𝐝𝑜𝑏𝑠|𝐦) is taken to be Normal, uncorrelated and with uniform 

variance 𝜎𝑑
2 = 10−4, and centered on 𝐝𝑡𝑟𝑢𝑒 = 𝐝(𝐦𝑡𝑟𝑢𝑒)  The prior information equation is of 

the form 𝐇𝐦 = 𝐡 with the first 𝑀 − 1 rows specifying the first differences of adjacent model 



parameters and the last row specifying the value of 𝑚𝑀.  The variance of the prior information is 

taken to be 𝜎ℎ
2 = 1, which is much larger than the variance of the data. The prior information 

𝐡𝒕𝒓𝒖𝒆 = 𝐇𝐦𝒕𝒓𝒖𝒆 implies a solution 𝐦(𝐴) = [𝐇T𝐂ℎ
−1𝐇]−𝟏𝐇T𝐡𝒕𝒓𝒖𝒆 with covariance 

𝐂𝑚
A = [𝐇T𝐂ℎ

−1𝐇]−1. The prior p.d.f. 𝑝𝐴(𝐦) is taken to be Normal, with covariance 𝐂𝑚
A , and 

centered on 𝐦(𝐴). 

The solution and its variance and resolution is inferred from 106 realizations drawn from the 

posterior distribution 𝑝(𝐦|𝐝𝑜𝑏𝑠) = 𝑝(𝐝𝑜𝑏𝑠|𝐦) 𝑝𝐴(𝐦). They compare well with the solution and 

covariance estimated using Linearized Generalized Least Squares (Menke 2018), utilizing the 

gradient: 

𝐺𝑖𝑗 ≈
𝜕𝑑𝑖

𝜕𝑚𝑗
= 𝐺𝑖𝑗

0 + 2𝑞0𝑄𝑖𝑗𝑚𝑗 

(17) 

The Direchlet trade-off curve (Figure 1A) demonstrates that the size of variance 𝐾(𝑁) are below 

the reference value 𝐾(𝐴) for all values of 𝑁.  Decreasing 𝑁 from 11 to 7 decreases the size of 

variance by a factor of about three, while causing only a modest degradation of the resolution 

(Figure 1B). 

The Backus-Gilbert trade-off curve (Figure 2) is broadly similar to the Dirichlet curve, except 

that, as expected, the elements of the resolution matrices are wider than the Dirichlet case, but 

have edges  that decline very rapidly with distance from the main diagonal 

The resolution matrix 𝐑G for deviations of the model about the prior model (Figure 3) is not 

fully-resolved, but is moderately-well localized. 

  



 

Figure 1. Dirichlet resolution case.  (A) Trade off curve (curve with circles) for size of variance 

𝐾(𝑁) versus spread of resolution 𝐽(𝑁) for the sample problem. The reference value 𝐾(𝐴) (dotted 

line) is everywhere above the curve.  (B)  The resolution matrix 𝐑(𝑁) (colors) of the sample 

problem for selected values of 𝑁. The reference value 𝐾(𝐴) (dotted line) is everywhere above the 

curve. The resolution becomes more localized (concentrated along the main diagonal) as the 

value of 𝑁 is increased. 

 

Figure 2. Backus-Gilbert resolution case.  (A) Trade off curve (curve with circles) for size of 

variance 𝐾(𝑁) versus spread of resolution 𝐽(𝑁) for the sample problem. The reference value 𝐾(𝐴) 

(dotted line) is everywhere above the curve.  (B)  The resolution matrix 𝐑(𝑁) (colors) of the 

sample problem for selected values of 𝑁. The reference value 𝐾(𝐴) (dotted line) is everywhere 

above the curve. The resolution becomes more localized (concentrated along the main diagonal) 

as the value of 𝑁 is increased. 



 

Figure 3.  The resolution matrix 𝐑G for deviations of the solution about the prior information. 

 

Backus, G. and F. Gilbert (1967). Numerical application of a formalism for geophysical inverse problems, 

Geophys. J. R. Astr. Soc. 13, 247-276. 

Menke, W., 2018. Geophysical Data Analysis: Discrete Inverse Theory, 4th Edition, Elsevier, 322pp. 

 

 

 


