Contents:
Section 1: The derivative of wave speed with respect to propagation direction.
Section 2. Gradient method for minimizing/maximizing wave speed.
Section 3. Grid search for a starting value.
Section 4: Discussion of the appropriateness of non-degenerate perturbation theory
Section 5: Discussion of equation for P-wave axes

Section 1: The derivative of wave speed with respect to propagation direction.

The wave polarization direction \(\mathbf{p} \) satisfies the eigenvalue problem:

\[
M_{ij} p_j = s p_i
\]

(1)

Here \(s = \rho v^2 \) where \(\rho \) is density and \(v \) is wave speed. The matrix \(M \) depends upon propagation direction \(\mathbf{t} \):

\[
M_{ij} = c_{ijpq} t_p t_q
\]

(2)

Let us now represent the propagation direction \(\mathbf{t} \) in terms of polar coordinates \(\theta \) and \(\phi \).

\[
\mathbf{t}(\theta, \phi) = \begin{bmatrix} \sin \theta \sin \phi \\ \sin \theta \cos \phi \\ \cos \theta \end{bmatrix} \quad \text{and} \quad \theta = \tan\left\{\left(t_1^2 + t_2^2\right)^{1/2}/t_3 \right\} \quad \phi = \tan 2[t_1,t_2]
\]

(3)

The goal is to compute the derivatives \(ds/d\theta \) and \(ds/d\phi \), so that \(s(\theta, \phi) \) can be minimized or maximized with respect to propagation direction.

First-order non-degenerate perturbation theory allows us to calculate the perturbation \(\Delta s \) of an eigenvalue caused by a perturbation \(\Delta M \) of the associated matrix:

\[
\Delta s = \Delta M_{ij} p_i p_j
\]

(4)

I will argue later that non-degenerate perturbation is appropriate in this instance. The derivatives \(ds/d\theta \) and \(ds/d\phi \) can be inferred from Equation (4):
\[
\Delta s = \frac{ds}{d\theta} \Delta \theta = \frac{dM_{ij}}{d\theta} p_ip_j \Delta \theta \quad \text{so} \quad \frac{ds}{d\theta} = \frac{dM_{ij}}{d\theta} p_ip_j
\]
\[
\Delta s = \frac{ds}{d\varphi} \Delta \varphi = \frac{dM_{ij}}{d\varphi} p_ip_j \Delta \varphi \quad \text{so} \quad \frac{ds}{d\varphi} = \frac{dM_{ij}}{d\varphi} p_ip_j
\]

(5)

Applying the chain rule to the definition of \(\mathbf{M} \) in Equation (2) yields:
\[
\frac{dM_{ij}}{d\theta} = c_{ipjq} \frac{dt_p}{d\theta} t_q + c_{ipjq} t_p \frac{dt_q}{d\theta} =
\]
\[
= c_{ipjq} \frac{dt_p}{d\theta} t_q + c_{iqjp} \frac{dt_p}{d\theta} t_q = c_{ipjq} \frac{dt_p}{d\theta} t_q + c_{jpqi} \frac{dt_p}{d\theta} t_q = 2c_{ipjq} \frac{dt_p}{d\theta} t_q
\]
\[
\frac{dM_{ij}}{d\varphi} = c_{ipjq} \frac{dt_p}{d\varphi} t_q + c_{ipjq} t_p \frac{dt_q}{d\varphi} = 2c_{ipjq} \frac{dt_p}{d\varphi} t_q
\]

(6)

Here we have used the fact that \(M_{ij} = M_{ji} \) (implying \(dM_{ij}/d\theta = dM_{ji}/d\theta \)) and \(c_{ipjq} = c_{jpqi} \).

The derivatives of the propagation direction are computed by differentiating Equation (3):
\[
\frac{dt}{d\theta} = \begin{bmatrix} \cos \theta & \sin \varphi \\ \cos \theta & -\cos \varphi \\ -\sin \theta & 0 \end{bmatrix} \quad \text{and} \quad \frac{dt}{d\varphi} = \begin{bmatrix} \sin \theta & \cos \varphi \\ -\sin \theta & -\sin \varphi \end{bmatrix}
\]

Note that \(dt/d\theta \) and \(dt/d\varphi \) are both perpendicular to \(\mathbf{t} \).

(7)

Section 2. Gradient method for minimizing/maximizing wave speed.

Actually, we minimize/maximize \(s = \rho v^2 \).

Step 1. Find an initial guess for \((\theta, \varphi)\) using a coarse grid search (see Part 3).

Step 2: Compute \(\mathbf{t}, \frac{dt}{d\theta} \) and \(\frac{dt}{d\varphi} \) as in Equations (3) and (7).

Step 3. Compute \(\mathbf{M}, \frac{d\mathbf{M}}{d\theta} \) and \(\frac{d\mathbf{M}}{d\varphi} \) as in Equations (2) and (6).

Step 4. Extract the three eigenvalues \(\lambda_i \) and corresponding eigenvectors \(\mathbf{v}^{(i)} \) of \(\mathbf{M} \).

Step 5. Find the index of the largest eigenvalue \(k = \arg\max_i \lambda_i \) and set \(s = \lambda_k \) and \(\mathbf{p} = \mathbf{v}^{(k)} \).

Step 6. Compute the gradient \(\mathbf{g} = [ds/d\theta, ds/d\varphi]^T \) as in Equation (5) and its direction \(\mathbf{n} = \mathbf{g}/|\mathbf{g}| \).
Step 7. Update \((\theta, \varphi)\) using a gradient method, stepping in the either in the \(-n\) or \(+n\) direction, depending upon whether \(s\) is being minimized or maximized.

Section 3. Grid search for a starting value.

Step 1. Prepare a coarse grid \((\theta_m, \varphi_n)\) with \(0 \leq \theta_m \leq \pi\) and \(0 \leq \varphi_n \leq 2\pi\).

Step 2: Then, for each node on the grid, tabulate \(s_{mn} = s(\theta_m, \varphi_n)\):

2A. Compute \(t\) as in Equations (3).

2B. Compute \(M\) as in Equations (2).

2C. Extract the three eigenvalues \(\lambda_i\) of \(M\).

2D. Find the index of the largest eigenvalue \(k = \max_i \lambda_i\) and set \(s_{mn} = \lambda_k\).

Step 3: The starting value \((\theta_p, \varphi_q)\) for minimizing \(s\) is:

\[
(p, q) = \arg\min_{m,n} s(\theta_m, \varphi_n)
\]

The corresponding starting value for maximizing \(s\) is:

\[
(p, q) = \arg\max_{m,n} s(\theta_m, \varphi_n)
\]

The intermediate direction, \(t^{int}\) satisfies \(t^{int} = \pm(t^{fast} \times t^{slow})\) where the sign is chosen to insure a right-handed coordinate system \(t^{slow} = t^{fast} \times t^{int}\). The intermediate P-wave speed \(s^{int} = \lambda_k\) is the largest eigenvalue \(\lambda_k\) of \(M\), were \(M\) is calculated using Equation 2 with \(t = t^{slow}\). The rotation matrix \(S\) that takes \(c_{ijpq}\) into a coordinate system in which \((t^{fast}, t^{int}, t^{slow})\) are parallel to \((x_1, x_2, x_3)\) is \(S = [t^{fast}, t^{int}, t^{slow}]^T\).

Note: I have checked this result numerically and it works fine.

Section 4. I now return to the matter of the appropriateness of applying non-degenerate perturbation theory to the analysis of:

\[
M p^{(i)} = s_i p^{(i)} \rightarrow (M + \Delta M)(p^{(i)} + \Delta p^{(i)}) = (s_i + \Delta s_i) (p^{(i)} + \Delta p^{(i)})
\]

The key question is whether the largest eigenvalue, say \(s_k\) is distinct; that is, has a value different than the other two eigenvalues. In typical Earth materials, the answer is yes, since \(s_k\)
corresponds to the P-wave velocity, where as the other two eigenvalues refer to the S-wave velocities, and in a typical Earth material the P-velocity is always higher than either of the two S-velocities.

Another interesting aspect of this perturbation problem arises from $dt/d\theta$ and $dt/d\phi$ both being perpendicular to t. This behavior implies $ds/d\theta = ds/d\phi = 0$ in isotropic material. Denoting $dt/d\theta = n$ with $t \cdot n = 0$, we find in isotropic material with Lame coefficients λ and μ:

$$c_{ipjq} = \lambda \delta_{ip} \delta_{jq} + \mu \delta_{ij} \delta_{pq} + \mu \delta_{iq} \delta_{j}$$

$$ds/d\theta = (\lambda \delta_{ip} \delta_{jq} + \mu \delta_{ij} \delta_{pq} + \mu \delta_{iq} \delta_{j} + \lambda \delta_{ip} \delta_{jq} + \mu \delta_{ij} \delta_{pq} + \mu \delta_{iq} \delta_{j}) n_{p} t_{q} p_{i} p_{j}$$

$$= \lambda n_{i} t_{j} p_{j} + \mu n_{i} t_{j} p_{j} + \mu n_{j} t_{i} p_{i} + \lambda n_{i} t_{j} p_{j} + \mu n_{p} t_{p} p_{i} p_{i} + \mu n_{p} t_{p} p_{i} p_{i} = 0$$

(11)

Here we have used the fact that, for a P wave in an isotropic material, the polarization direction p is parallel to the propagation direction t, so $n \cdot p = 0$. The same argument applies for $ds/d\phi$.

Section 5: Discussion of equation for P-wave axes

Suppose that we generically refer to the angles of propagation θ or ϕ as α. The condition that the wave speed (or rather eigenvalue s) is stationary with respect to small perturbations in α is:

$$0 = \frac{ds}{d\alpha} = \frac{dM_{ij}}{d\alpha} p_{i} p_{j} = 2c_{ipjq} \frac{dt_{i}}{d\alpha} t_{q} p_{i} p_{j} \quad \text{for } \alpha = \theta, \phi$$

(12)

Defining $b_{p} \equiv dt_{p}/d\alpha$ and noting $b_{p} t_{p} = 0$, we have

$$0 = (c_{ipjq} p_{i} p_{j}) t_{q} b_{p} \quad \text{for all } b \perp t$$

(13)

Consider the eigenvalue problem $N_{pq} t_{q} = \lambda t_{p}$ with $N_{pq} = c_{ipjq} p_{i} p_{j}$ (where p_{j} is fixed). Then Equation (13) is equivalent to:

$$0 = \lambda t_{p} t_{q} b_{p} \quad \text{for all } b \perp t$$

(14)

Equation (14) is satisfied trivially since $t_{p} b_{p} = 0$. Hence the condition for an extremum in s is:

$$c_{ipjq} p_{i} p_{j} t_{q} = \lambda t_{p} \quad \text{and} \quad c_{ipjq} t_{p} t_{q} p_{j} = s p_{i}$$

(15)

After contracting first equation by t_{p} and the second by p_{i}:
\[\lambda = c_{ipjq} p_i t_q t_p \text{ and } s = c_{ipjq} t_p t_q p_i p_j \]

We conclude \(\lambda = s \). We now manipulate Equation (16):

\[
\begin{align*}
 c_{ipjq} p_i t_q t_p &= s t_p & c_{ipjq} t_p t_q p_j &= s p_i \\
 (s^{-1} c_{ipjq} p_i t_q) p_p &= t_i & (s^{-1} c_{ipjq} t_p t_q) p_p &= p_i \\
 Z_{ip} p_p &= t_i & Z_{ip} t_p &= p_i & \text{with} & & Z_{ip} &= s^{-1} c_{ipjq} p_i t_q \\
\end{align*}
\]

Here the symmetric matrix \(Z \) both takes \(p \) into \(t \) and \(t \) into \(p \). This transformation can happen in either of two ways. The first is when \(p \parallel t \) and \(Z = t t^T + \alpha u u^T + \beta v v^T \), where \(u, v \) and \(t \) are mutually perpendicular unit vectors and where \(\alpha \) and \(\beta \) are constants; that is, \(Z \) leaves unchanged the component of \(y \) parallel to \(t \) while rescaling the components normal to \(t \) and/or rotating them in the plane. The second is when \(p \perp t \) and \(Z = t p^T + \alpha p t^T + \beta v v^T \), where \(t, p \) and \(v \) are mutually perpendicular unit vectors and where \(\alpha \) and \(\beta \); that is, \(Z \) interchanges the \(p \) and \(t \) components of \(y \), while rescaling the component parallel to \(v \). Hence:

\[
\begin{align*}
 c_{ipjq} t_p t_q &= s t_i & \text{with } p_i &= t_i & \text{or} & & c_{ipjq} t_q t_p &= s p_i & \text{with } p_i t_i &= 0 \\
\end{align*}
\]

Equation (18a) would seem to represent the P-wave and (18b) the S-wave. Unfortunately, I do not know of a fast way of solving Equation (18a). I have, however, checked that it is solved by the \((s, t) \) returned by the linearized solver described above (at least for a test case consisting of arbitrarily rotated \(c_{ijpq} \) corresponding to orthorhombic olivine).

function [thfast, phfast, sfast, tfast, thint, phint, sint, tint, thslow, phslow, sslow, tslow, cp] = findaxes2(c)
% find the fast, intermediate and slow directions and rho*v^2 of P wave in an anisotropic medium
% c: 3x3x3x3 elasticity tensor
% th and ph (in radians) polar angles of axis
% t: unit vector of axis
% s: rho*Vp^2
% cp: c rotated so (fast int slow) are parallel to (x, y, z)
% controls accuracy of gradient method
MAXHALVINGS = 32;
% controls detection of being very close to extermum
MINIMUMLENGTH = 1e-6;
% PART 1: Coarse Grid Search
thmin = 0;
thmax = pi;
phmin = 0;
phmax = 2*pi;
Nth = 19;
Nph = 31;

th = thmin + (thmax-thmin)*[0:Nth-1]’/(Nth-1);
ph = phmin + (phmax-phmin)*[0:Nph-1]’/(Nph-1);
sfast = zeros(Nth, Nph);

for ith=[1:Nth]
 for iph=[1:Nph]
 sth = sin(th(ith));
 cth = cos(th(ith));
 sph = sin(ph(iph));
 cph = cos(ph(iph));
 t = [sth*sph; sth*cph; cth];
 % I checked that t'*dtdth=0 and t'*dtdph=0
 M = zeros(3,3);
 dMdth = zeros(3,3);
 dMdph = zeros(3,3);
 for i=[1:3]
 for j=[1:3]
 for p=[1:3]
 for q=[1:3]
 M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q);
 end
 end
 end
 end
 [V,L] = eig(M, ’vector’);
 sfast(ith, iph) = max(L);
 end
end

[s1,k1] = max(sfast);
[s2,k2] = max(s1);
k3 = k1(k2);
ithmax = k3;
iphmax = k2;
sgridmax = sfast(ithmax,iphmax);

thmax = th(ithmax);
phmax = ph(iphmax);

[s1,k1] = min(sfast);
[s2,k2] = min(s1);
k3 = k1(k2);
ithmin = k3;
iphmin = k2;
sgridmin = sfast(ithmin,iphmin);
thmin = th(ithmin);
phmin = ph(iphmin);

% Part 2, refine fast axis

myth = thmax;
myph = phmax;
alpha = (pi/180) * 1;
halvings = 0;

for itt=[1:100]
sth = sin(myth);
cth = cos(myth);
sph = sin(myph);
cph = cos(myph);

M = zeros(3,3);
dMdth = zeros(3,3);
dMdph = zeros(3,3);

for i=[1:3]
 for j=[1:3]
 for p=[1:3]
 for q=[1:3]
 M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q);
 dMdth(i,j) = dMdth(i,j) + 2*c(i,p,j,q)*dtdth(p)*t(q);
 dMdph(i,j) = dMdph(i,j) + 2*c(i,p,j,q)*dtdph(p)*t(q);
 end
 end
 end
end

[V,L] = eig(M,'vector');
[Lmax, k] = max(L);
mys = Lmax;
P = V(:,k);
mydsdth = 0;
mydsdph = 0;
for i=[1:3]
 for j=[1:3]
 mydsdth = mydsdth + dMdth(i,j)*P(i)*P(j);
 mydsdph = mydsdph + dMdph(i,j)*P(i)*P(j);
 end
end
grad_s = [mydsdth; mydsdph];
nu = grad_s/sqrt(grad_s'*grad_s);

myth2 = myth + alpha * nu(1);
myph2 = myph + alpha * nu(2);

sth2 = sin(myth2);
cth2 = cos(myth2);
sph2 = sin(myph2);
cph2 = cos(myph2);

t2 = [sth2*sph2; sth2*cph2; cth2];
M2 = zeros(3,3);

for i=[1:3]
for j=[1:3]
for p=[1:3]
for q=[1:3]
M2(i,j) = M2(i,j) + c(i,p,j,q)*t2(p)*t2(q);
end
end
end
end

[V2,L2] = eig(M2,'vector');
[L2max, k2] = max(L2);
mys2 = L2max;
if(mys2 > mys)
myth = myth2;
myph = myph2;
mys = mys2;
else
alpha = alpha/2;
halvings = halvings + 1;
end
if(halvings > MAXHALVINGS)
break;
end

thfast = myth;
phfast = myph;
sfast = mys;

% Part 3, refine slow axis
myth = thmin;
myph = phmin;
alpha = (pi/180) * 1;
halvings = 0;

for itt=[1:100]
sth = sin(myth);
cth = cos(myth);
sph = sin(myph);
cph = cos(myph);

 t = [sth*sph; sth*cph; cth];
dtdth = [cth*sph; cth*cph; -sth];
dtdph = [sth*cph; -sth*sph; 0];
 M = zeros(3,3);
 dMdth = zeros(3,3);
 dMdph = zeros(3,3);
 for i=[1:3]
 for j=[1:3]
 for p=[1:3]
 for q=[1:3]
 M(i,j) = M(i,j) + c(i,p,j,q)*t(p)*t(q);
 dMdth(i,j) = dMdth(i,j) + 2*c(i,p,j,q)*dtdth(p)*t(q);
 dMdph(i,j) = dMdph(i,j) + 2*c(i,p,j,q)*dtdph(p)*t(q);
 end
 end
 end
 end
 [V,L] = eig(M,'vector');
 [Lmin, k] = min(L);
 mys = Lmin;
P = V(:,k);
 mydsdth = 0;
 mydsdph = 0;
 for i=[1:3]
 for j=[1:3]
 mydsdth = mydsdth + dMdth(i,j)*P(i)*P(j);
 mydsdph = mydsdph + dMdph(i,j)*P(i)*P(j);
 end
 end

 grad_s = [mydsdth; mydsdph];
 len_grad_s = sqrt(grad_s'*grad_s);
 if (len_grad_s < MINIMUMLENGTH)
 break;
 end

nu = -grad_s/len_grad_s;

myth2 = myth + alpha * nu(1);
myph2 = myph + alpha * nu(2);

sth2 = sin(myth2);
cth2 = cos(myth2);
sph2 = sin(myph2);
cph2 = cos(myph2);

t2 = [sth2*sph2; sth2*cph2; cth2];
M2 = zeros(3,3);

for i=[1:3]
 for j=[1:3]
 for p=[1:3]
 for q=[1:3]
 M2(i,j) = M2(i,j) + c(i,p,j,q)*t2(p)*t2(q);
 end
 end
 end
end

[V2,L2] = eig(M2,'vector');
[L2min, k2] = max(L2);
mys2 = L2min;
if(mys2 < mys)
 myth = myth2;
 myph = myph2;
 mys = mys2;
else
 alpha = alpha/2;
 halvings = halvings + 1;
end
if(halvings > MAXHALVINGS)
 break;
end

thslow = myth;
phslow = myph;
sslow = mys;

% Part 4, intermediate axis, perpendicular to other axes
sth = sin(thfast);
cth = cos(thfast);
sph = sin(phfast);
cph = cos(phfast);
tfast = [sth*sph; sth*cph; cth];

sth = sin(thslow);
cth = cos(thslow);
sph = sin(phslow);
cph = cos(phslow);
tslow = [sth*sph; sth*cph; cth];

tint = cross(tfast, tslow);
thint = atan(sqrt(tint(1)*tint(1)+tint(2)*tint(2)) / tint(3));
phint = atan2(tint(1), tint(2));

sth = sin(thint);
cth = cos(thint);
sph = sin(phint);
cph = cos(phint);
tint = [sth*sph; sth*cph; cth];

% ensure sign correct; that is fast cross intermediate = slow
if(tslow'*cross(tfast,tint) < 0)
tint = -tint;
end

thint = atan(sqrt(tint(1)*tint(1)+tint(2)*tint(2)) / tint(3));
phint = atan2(tint(1), tint(2));
% I check that [tint'*tfast, tint'*tslow, tfast'*tslow]=[0,0,0]

M = zeros(3,3);
for i=[1:3]
 for j=[1:3]
 for p=[1:3]
 for q=[1:3]
 M(i,j) = M(i,j) + c(i,p,j,q)*tint(p)*tint(q);
 end
 end
 end
end
L = eig(M);
sint = max(L);
% rotate to these axes
cp = rot3x3x3x3(c, [tfast, tint, tslow]');

function [Cout] = rot3x3x3x3(Cin,S)
Cout = zeros(3,3,3,3);
for i=[1:3]
for j=[1:3]
for k=[1:3]
for l=[1:3]
 for p=[1:3]
 for q=[1:3]
 for r=[1:3]
 for s=[1:3]
 Cout(i,j,k,l) = Cout(i,j,k,l) + S(i,p)*S(j,q)*S(k,r)*S(l,s)*Cin(p,q,r,s);
 end
 end
end
end
end
end
end