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Suppose that one introduces prior information about the value of a model parameter 𝑚 via a prior p.d.f. 

𝑝(𝑚).  The p.d.f. might have a variance parameter, say 𝑥, that controls its properties. For instance, 𝑥 

might be a variance that expresses how confident we are of the prior information that 𝑚 is close to some 

prescribed value. 

However, suppose that we are uncertain of 𝑥, too.  We can treat 𝑥 as a random variable with its own p.d.f. 

𝑝(𝑥), in which case it is called a “hyperparameter”. Then, the overall uncertainty in 𝑚 is a combination of 

the uncertainty expressed in the “nominal” prior, which is now understood to be a conditional p.d.f., say 

𝑝(𝑚|𝑥), and the p.d.f. 𝑝(𝑥) of the hyperparameter.  According to the usual rules of probability, the joint 

probability of 𝑚 and 𝑥 is: 

𝑝(𝑚, 𝑥) = 𝑝(𝑚|𝑥) 𝑝(𝑥) 

and the “real” prior is: 

𝑝(𝑚) = ∫𝑝(𝑚, 𝑥) 𝑑𝑥 

Typically, the “real” prior 𝑝(𝑚) will be wider than the “nominal” prior 𝑝(𝑚|𝑥), because it combines 

uncertainty from two sources. 

An important question is whether this two-step process has advantages over the alternative of initially 

specifying a different, wider prior. 

Suppose that the “nominal” prior is 𝑝(𝑚; 𝜇, 𝜎2, 𝜅) where 𝜇, 𝜎2 and 𝜅 are respectively the mean, variance 

and kurtosis of the p.d.f.  Here, parameters to the right of the semi-colon denote known parameters, not 

hyperparameters.  If the variance were very poorly known, then one might consider it to be a 

hyperparameter, in which case the “nominal” prior is 𝑝(𝑚|𝜎2; 𝜇, 𝜅) and the p.d.f. for variance 𝑝(𝜎2).  
The “real” prior is then: 

𝑝(𝑚; 𝜇, 𝑘) = ∫𝑝(𝑚|𝜎2; 𝜇, 𝜅) 𝑝(𝜎2) 𝑑𝜎2 

Presumably, one proceeded in this fashion because one believes that the introduction of the variance 

hyperparameter has not altered the mean and kurtosis; that is, the mean and kurtosis of 𝑝(𝑚; 𝜇, 𝜎2, 𝑘) are 

the same as the mean and kurtosis of is 𝑝(𝑚; 𝜇, 𝜅).  This reasoning is correct – although arguably for 

deceptive reasons – and is the major advantage of using hyperparameters. 

A general result can be constructed for the expectations 𝑥𝑛 of a set of functions 𝐹(𝑛)(𝑚), that is: 

𝑥𝑛 ≡ 𝐸(𝐹
(𝑛)) = ∫𝐹(𝑛)(𝑚)𝑝(𝑚) 𝑑𝑚 

Suppose that the p.d.f.  𝑝(𝑚; 𝐱) is parameterized in terms of 𝑥𝑖, 𝑖 = 0⋯𝑁. Let the symbol 𝐱(~𝑛) mean all 

the 𝑥𝑖s except 𝑥𝑛. Then, for a single hyperparameter 𝑥𝑛 and the 𝑘th function: 

∫𝐹(𝑘)(𝑚) 𝑝(𝑚; 𝐱(~𝑛)) 𝑑𝑚 = ∫𝐹(𝑘)(𝑚) {∫𝑝(𝑚|𝑥𝑛; 𝐱
(~𝑛)) 𝑝(𝑥𝑛) 𝑑𝑥𝑛} 𝑑𝑚 = 



∫{∫𝐹(𝑘)(𝑚) 𝑝(𝑚|𝑥𝑛; 𝐱
(~𝑛)) 𝑑𝑚}  𝑝(𝑥𝑛) 𝑑𝑥𝑛 = ∫𝑥𝑘  𝑝(𝑥𝑛) 𝑑𝑥𝑛 = {

𝑥𝑘          if  𝑘 ≠ 𝑛

𝐸(𝑥𝑛)    if  𝑘 = 𝑛
 

Here, we use the fact that 𝑝(𝑚|𝑥𝑛; 𝐱
(~𝑛)) is the same function as 𝑝(𝑚; 𝑥𝑛, 𝐱

(~𝑛)), and we presume that 

all the integrals exist (which may not always be the case).  When 𝑘 ≠ 𝑛, the “real” prior has the same 

𝐸(𝐹(𝑘)) as the “nominal” prior, but when 𝑘 = 𝑛  the “real” prior’s is 𝐸(𝐹(𝑛)) ≡ ∫𝐹(𝑛) 𝑝(𝑥𝑛) 𝑑𝑥𝑛. 

The general result applies to mean, kurtosis and variance because the they are so closely related to 

moments; that is, the functions 𝐹(𝑘)(𝑚) = 𝑚𝑘.  However, were the “nominal” prior parameterized by its 

median, which unlike the mean, cannot be written as the expected value of any function, the medians of 

the “nominal” and “real” priors would, in general, be different from one another.  Another way in which 

the result is deceptive is that, although the mean and kurtosis of the nominal and real priors are equal, the 

underlying p.d.f.s are not the same.  For instance, if the “nominal” prior is Normal, the “real” prior might 

not be. 

Case 1. A Uniformly-distributed prior with a Uniformly-distributed hyperparameter 

The nominal prior for model parameter 𝑚 is uniform between 0 and hyperparameter 𝐿, with 𝐿 being 

uniform between 1 and 2. As shown in the derivation, the functional form of the “real” prior 𝑝(𝑚) is: 

𝑝(𝑚) = {
ln 2                 if 0 ≤ 𝑚 ≤ 1
ln2 − ln𝑚   if 1 ≤ 𝑚 ≤ 2
0                       otherwise

 

It’s not uniform, but it’s well-defined (Figure 1).  

 
Fig.2.  The prior 𝑝(𝑚). 

 

The “real” prior 𝑝(𝑚) is computed from the “nominal” prior 𝑝(𝑚|𝐿) and the p.d.f. 𝑝(𝐿) of the 

hyperparameter: 

𝑝(𝑚|𝐿) = {𝐿
−1 𝑖𝑓 0 ≤ 𝑚 ≤ 𝐿
0         otherwise

      and    𝑝(𝐿) = {
1    𝑖𝑓 1 ≤ 𝐿 ≤ 2
0         otherwise

 

The joint probability of 𝑚 and 𝐿 is computed using the rule 𝑝(𝑚, 𝐿) = 𝑝(𝑚|𝐿)𝑝(𝐿).  It has the value of 

𝐿−1 in a trapezoidal area of the (𝑚, 𝐿) plane (Figure 2). 

 



 

Fig. 1.  The joint p.d.f. 

𝑝(𝑚, 𝐿) is non-zero in a 

trapezoidal region of the 
(𝑚, 𝐿) plane.  Inside the 

region it has the value 

𝐿−1. 

 

That the total probability 𝑃 of 𝑝(𝑚, 𝐿) is unity can be verified by integration over the trapezoid: 

𝑃 = ∫ {𝐿−1∫ 𝑝(𝑚, 𝐿) 𝑑𝑚
𝐿

0

}𝑑𝐿 = ∫ {𝐿−1𝐿}𝑑𝐿 =
2

1

2 − 1 = 1
2

1

 

The real prior can be formed by integrating 𝑝(𝑚, 𝐿) over 𝐿 to form a univariate p.d.f. 𝑝(𝑚): 

𝑝(𝑚) = ∫ 𝑝(𝑚, 𝐿) 𝑑𝐿
2

1

=

{
 
 

 
 ∫ 𝐿−1𝑑𝐿

2

1

        if 0 ≤ 𝑚 ≤ 1

∫ 𝐿−1𝑑𝐿
2

𝑚

        if 1 ≤ 𝑚 ≤ 2

0                  otherwise

 

Using ∫𝐿−1𝑑𝐿 = ln 𝐿 yields: 

𝑝(𝑚) = {
ln 2                 if 0 ≤ 𝑚 ≤ 1
ln2 − ln𝑚   if 1 ≤ 𝑚 ≤ 2
0                       otherwise

 

The total probability 𝑃 is unity: 

𝑃 = ∫ 𝑝(𝑚) 𝑑𝑚
2

0

= ∫ 𝑝(𝑚) 𝑑𝑚
1

0

+∫ 𝑝(𝑚) 𝑑𝑚
2

1

= ln2 + ln 2 − [𝑚 l𝑛𝑚 −𝑚]1
2 

= 2ln 2 − 2 l𝑛 2 + 2 − 0 − 1 = 1 

Here we have used the rule ∫ ln 𝑥  𝑑𝑥 = 𝑥 ln 𝑥 − 𝑥 + 𝐶. 

Case 2. A Normally-distributed prior with a Normally-distributed hyperparameter 

The “nominal” prior for a model parameter 𝑚 is a Normally-distribution with known mean 𝑚̅ and 

hyperparameter variance 𝜎2.  The “certainty” 𝑠 = 𝜎−1 is Normally-distributed with zero mean and 

known reciprocal variance 𝑘2.  Thus, 𝑠2 has a high probability of being less than 𝑘, while the variance 𝜎2 

has a high probability of being greater than 𝑘 (but probability falls off to zero as 𝜎 → ∞). As shown 

below, the true prior 𝑝(𝑚) is Cauchy-distributed with mode 𝑚̅ and scale parameter 𝑘. 



𝑝(𝑚|𝑠) =
1

√2𝜋𝜎
exp{−½𝜎−2(𝑚 − 𝑚̅)2} =

𝑠

√2𝜋
exp{−½𝑠2(𝑚 − 𝑚̅)2}     with − ∞ ≤ 𝑚 ≤ ∞ 

𝑝(𝑠) =
2𝑘

√2𝜋
exp{−½𝑘2𝑠2}      with    0 ≤ 𝑠 ≤ ∞ 

𝑝(𝑚, 𝑠) = 𝑝(𝑚|𝑠)𝑝(𝑠) =
𝑠

√2𝜋
exp{−½𝑠2(𝑚 − 𝑚̅)2}

2𝑘

√2𝜋
exp{−½𝑘2𝑠2} 

𝑝(𝑚, 𝑠) =
𝑘

𝜋
𝑠 exp{−½𝑠2[(𝑚 − 𝑚̅)2 + 𝑘2]} 

𝑝(𝑚, 𝑠) =
𝑘

𝜋
𝑠 exp{−½𝑍2𝑠2}    with    𝑍2 = [(𝑚 − 𝑚̅)2 + 𝑘2]   

𝑝(𝑚) =
𝑘

𝜋
∫ 𝑠 exp{−½𝑍2𝑠2}   𝑑𝑠

∞

0

 

𝑥 = 𝑍𝑠   and    s = 𝑍−1𝑥   and   𝑑𝑠 = 𝑍−1𝑑𝑥  and    𝑥 → 0 as 𝑠 → 0  and    𝑥 → ∞ as 𝑠 → ∞ 

𝑝(𝑚) =
𝑘

𝜋
𝑍−2∫ 𝑥 exp{−½𝑥2}   𝑑𝑥

∞

0

= 
𝑘

𝜋
𝑍−2∫ 𝑥 exp{−½𝑥2}   𝑑𝑥

∞

0

 

Wikipedia says if 𝜑(𝑥) =
1

√2𝜋
exp{−½𝑥2} then ∫𝑥𝜑(𝑥)𝑑𝑥 = −𝜑(𝑥) + 𝐶, so: 

𝑝(𝑚) =
𝑘

𝜋
𝑍−2 = (

1

𝜋
)(

𝑘

(𝑚 − 𝑚̅)2 + 𝑘2
) = (

1

𝜋𝑘
)(

1

(
𝑚 − 𝑚̅
𝑘

)
2

+ 1

) 

which is a Cauchy distribution with median 𝑚̅ and scale factor 𝑘.  The Cauchy distribution is extremely 

long-tailed. 

The distribution 𝑝(𝜎) is: 

𝑠 = 𝜎−1      and       
𝑑𝑠

𝑑𝜎
= −𝜎−2 

𝑝(𝜎) = 𝑝[𝑠(𝜎)] |
𝑑𝑠

𝑑𝜎
| =

2𝑘

√2𝜋
𝜎−2 exp{−½𝑘2𝜎−2} 

It has extreme values  𝑝(𝜎 → 0) = 0   and    𝑝(𝜎 → ∞) = 0 and has a peak at 𝜎 = √½𝑘 (Figure 3): 

𝑝(𝜎) ∝ 𝑘2𝜎−2 exp(−½𝑘2𝜎−2) =𝑥−2 exp(−½𝑥−2)     with   𝑘2𝜎−2 = 𝑥−2    or     𝑘𝑥 = 𝜎 

𝑑𝑝

𝑑𝑥
= 0 = −2𝑥−3 exp(−½𝑥−2) + (−½)(−2𝑥−3)𝑥−2 exp(−½𝑥−2) 

0 = −2 + 𝑥−2    or     𝑥−2 = 2    or   𝑥 = √½    so   𝜎 = √½𝑘 

 



 

 

 
Fig. 3. The probability density function 𝑝(𝜎) for 𝑘 = 1 (dotted curve), 𝑘 = 2 (solid curve) and 𝑘 = 5 

(bold curve).  The peak is at 𝜎 = √½𝑘. 
 

The p.d.f. 𝑝(𝜎) is very long-tailed and has no expected value: 

𝐸(𝜎) = ∫ 𝜎 𝑝(𝜎) 𝑑𝜎
∞

0

=
2𝑘

√2𝜋
∫  𝜎−1 exp{−½𝑘2𝜎−2}  𝑑𝜎
∞

0

 

𝑥 = 𝑘𝜎−1   and     𝜎 = 𝑘𝑥−1    and     𝑑𝜎 = −𝑘𝑥−2𝑑𝑥    and   𝜎 → 0, 𝑥 → ∞    and   𝜎 → ∞, 𝑥 → 0 

𝜎̅ =
2𝑘3

√2𝜋
∫ (𝑘−1𝑥) exp{−½𝑘2𝑥2} (−𝑘𝑥−2) 𝑑𝑥
0

∞

=
2𝑘

√2𝜋
∫ 𝑥−1 exp{−½𝑘2𝑥2} 𝑑𝑥
∞

0

 

For 𝑥 → 0, the exponential in the integrand → 1, while 𝑥−1  → ∞, so the integrand is not integrable and 

the expected value does not exist. 

What follows is a rewritten version of the first section 

Invariance of Expectations of the Prior During Hyperparameter Transformations 

Bill Menke, October 31, 2020 

 

Suppose that one introduces prior information about the value of a model parameter 𝑚 via a prior p.d.f. 

𝑝𝑃(𝑚; 𝑥).  Here, 𝑥 is a known parameter (like mean or variance) that controls the properties of the prior. 

Suppose that we are uncertain of 𝑥, too.  We can treat 𝑥 as a random variable with its own p.d.f. 𝑝𝑥(𝑥), in 

which case 𝑥 is a hyperparameter. Then, the overall uncertainty in 𝑚 is a combination of the uncertainty 



expressed in a “nominal” prior, which is now understood to be the conditional p.d.f. 𝑝𝑁(𝑚|𝑥), and the 

𝑝𝑥(𝑥) of the hyperparameter.  The nominal prior 𝑝𝑁(𝑚|𝑥) is the same function as 𝑝𝑃(𝑚; 𝑥), but now we 

view 𝑥 as a random variable. According to the usual rules of probability, the joint p.d.f. of 𝑚 and 𝑥 is: 

𝑝𝐽(𝑚, 𝑥) = 𝑝𝑁(𝑚|𝑥) 𝑝𝑥(𝑥) 

and the “final” prior is: 

𝑝𝐹(𝑚) = ∫𝑝𝐽(𝑚, 𝑥) 𝑑𝑥 

Suppose that the prior 𝑝𝑃 has several parameters, 𝑥𝑖, 𝑖 = 1⋯𝑁, only one, say 𝑥𝑛, of which is transformed 

into a hyperparameter. We denote this situation as 𝑝𝑁(𝑚|𝑥𝑛; 𝐱
(~𝑛)). Here, the symbol 𝐱(~𝑛) mean all the 

𝑥𝑖s except 𝑥𝑛. Now consider the expected value of a function 𝑓(𝑛)(𝑚) with respect to a p.d.f. 𝑝(𝑚): 

𝐸[𝑓(𝑛), 𝑝] = ∫𝑓(𝑛)(𝑚)𝑝(𝑚) 𝑑𝑚 

The following general result holds between 𝑥𝑘
𝐹 ≡ 𝐸[𝑓(𝑘), 𝑝𝐹] and 𝑥𝑘 ≡ 𝐸[𝑓

(𝑘), 𝑝𝑃]: 

𝑥𝑘
𝐹 = 𝐸[𝑓(𝑘), 𝑝𝐹] = ∫𝑓

(𝑘)(𝑚) 𝑝𝐹(𝑚; 𝐱
(~𝑛)) 𝑑𝑚 = 

∫𝑓(𝑘)(𝑚) {∫𝑝𝑁(𝑚|𝑥𝑛; 𝐱
(~𝑛)) 𝑝𝑥𝑛(𝑥𝑛) 𝑑𝑥𝑛} 𝑑𝑚 = 

∫{∫𝑓(𝑘)(𝑚) 𝑝𝑃(𝑚|𝑥𝑛; 𝐱
(~𝑛)) 𝑑𝑚} 𝑝𝑥𝑛(𝑥𝑛) 𝑑𝑥𝑛 = 

∫{∫𝑓(𝑘)(𝑚) 𝑝𝑃(𝑚; 𝑥𝑛, 𝐱
(~𝑛)) 𝑑𝑚} 𝑝𝑥𝑛(𝑥𝑛) 𝑑𝑥𝑛 = 

∫𝐸[𝑓(𝑘), 𝑝𝑃] 𝑝𝑥𝑛(𝑥𝑛) 𝑑𝑥𝑛 = ∫𝑥𝑘  𝑝𝑥𝑛(𝑥𝑛) 𝑑𝑥𝑛 = {
𝑥𝑘          if  𝑘 ≠ 𝑛

𝐸[𝑥𝑛, 𝑝𝑥𝑛]    if  𝑘 = 𝑛
 

Here, we use the fact that 𝑝𝑁(𝑚|𝑥𝑛; 𝐱
(~𝑛)) is literally the same function as 𝑝𝑃(𝑚; 𝑥𝑛, 𝐱

(~𝑛)). Also, we 

presume that all the integrals exist (which may not always be the case).  When 𝑘 ≠ 𝑛, 𝑥𝑘
𝐹 = 𝑥𝑘, and when 

𝑘 = 𝑛, 𝑥𝑛
𝐹 = 𝐸[𝑥𝑛, 𝑝𝑥𝑛] = ∫ 𝑥𝑛 𝑝(𝑥𝑛) 𝑑𝑥𝑛. Thus, as long as the “nominal” prior is parameterized in 

terms of its expectations with respect to known functions, the parameters obey a kind of invariance. 

Making one parameter into a hyperparameter does not change the values of the others in the “final” prior, 

and it changes the hyperparameter itself in a very simple way.  While useful, the result is a bit deceptive, 

because the “form” of 𝑝𝐹 may well be different than 𝑝𝑃. For example, when 𝑝𝑃 is Normal, 𝑝𝐹 will not be 

Normal in general. 

 

 

 

 

 



What follows is a rewritten version of the third section 

A Normally-distributed Prior with Normally-distributed Certainty is Cauchy-Distributed 

Bill Menke, November 1, 2020 

 

The “nominal” prior for a model parameter 𝑚 is a Normally-distribution with known mean 𝑚̅ and 

hyperparameter variance 𝜎2: 

𝑝(𝑚|𝑠) =
1

√2𝜋𝜎
exp{−½𝜎−2(𝑚 − 𝑚̅)2} =

𝑠

√2𝜋
exp{−½𝑠2(𝑚 − 𝑚̅)2}     with − ∞ ≤ 𝑚 ≤ ∞ 

 The “certainty” 𝑠 = 𝜎−1 is Normally-distributed with zero mean and known variance 𝑘−2: 

𝑝(𝑠) =
2𝑘

√2𝜋
exp{−½𝑘2𝑠2}      with    0 ≤ 𝑠 ≤ ∞ 

This p.d.f. says that the certainty is low; that is, 𝑠 < 𝑘−1 68% of the time. When transformed to 𝑝(𝜎) it 

produces the unimodal p.d.f.: 

𝑝(𝜎) = 𝑝[𝑠(𝜎)] |
𝑑𝑠

𝑑𝜎
| =

2𝑘

√2𝜋
𝜎−2 exp{−½𝑘2𝜎−2} 

This p.d.f. has limits  𝑝(𝜎 → 0) = 0   and   𝑝(𝜎 → ∞) = 0, has a single peak at 𝜎 = √½𝑘, and is very 

long-tailed (it has no mean) (Figure 1).  Thus, it represents the notion that 𝜎 is never zero, that most of te 

probability is near √½𝑘, and that very large values of 𝜎 are common. The “final” prior is: 

𝑝𝐹(𝑚) = ∫ 𝑝(𝑚|𝑠) 𝑝(𝑠) 𝑑𝑠
∞

0

= (
1

𝜋𝑘
)(

1

(
𝑚 − 𝑚̅
𝑘

)
2

+ 1

) 

Thus, 𝑝𝐹(𝑚) is a Cauchy distribution with median 𝑚̅ and scale factor 𝑘.  The Cauchy distribution is 

extremely long-tailed; that is 𝑚s far from the median are very common. 

 
Fig. 1. The probability density function 𝑝(𝜎) for 𝑘 = 1 (dotted curve), 𝑘 = 2 (solid curve) and 𝑘 = 5 

(bold curve).  The peaks are at 𝜎 = √½𝑘. 
 


