Least Squares with a Data Kernel Involving an Unknown Parameter
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Part 1. The idea is to view a standard “linear” inverse problem of the form d°”S = Gm has having a data
kernel G that is dependent on a parameter p, and then to solve for m and p in a way that makes use of the
fact that for fixed p the solution for m is m(p) = [GTG]~1GTd°Ps.

The prediction error e(p) is a function of a parameter p via:

e(p) = d°” - G(p) m(p)

is a vector of N observed data, m is a vector of M model parameters, and G is an N X M
matrix. For fixed p, the least squares solution is that one that minimizes the total E(m) = ||e||3 and is
given by:

Here d°bs

m(p) = G~9d°* with G™9 =[Z(P)]'[GE)]" and Z(p) = [G@)]"G®)

Here G79 is a generalized inverse. The least squared solution m(p) defines a parametric curve in the
space of m. The estimated solution (p®St, m®5t) is the point of minimum error along this curve; that is
pet = argmin, E(p) and m** = m®* (p®*"). This point can be found using Newton’s method, once a
procedure for calculating the derivative de/dp has been established.

The derivative of the solution with respect to the parameter p is:
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Combining these equations leads to:
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Consequently, for fixed p the solution m(p) and its derivative 9m®¢ /dp satisfy linear equations
involving the same M X M matrix Z:
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For fixed p, the derivative of the predicted data dP"® and the error e = d°?S — dP"® are:
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Two useful second derivatives are:
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All these formulas have been verified numerically.

Newton’s method can be used to iteratively improve an estimate of the solution, starting with an initial
estimate (po, m(py)). At the nth iteration, the solution is p,, and m,, = [Z(p,)] ™ [G(p,)]Td°?S. We
now define:

de
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and f = —e(my,p,)

The least square solution for Ap = pp, 41 — Py, is then Ap = [FTF]~'FTf and the estimated parameter is
p®t = lim,,_,oPpn+1. This procedure can be trivially extended to the case of several parameters by
adding columns to F. If there are K such parameters, then (K + 1) linear equations, each the same

M X M matrix Z, must be solved at each iteration of Newton’s method.

The covariance of the estimate can be approximated using a linearized approximation, C, , ~
c2[WTW]1, where:

G
W= [G(pn) ]

%I’n

Here 07 is the variance of the data.

Example 1: We consider a simple curve fitting case with M = 1 model parameter m = m; and data
kernel case G;;(p) = m x?, where x; is an auxiliary variable. The derivative is 9G; i/0p = x’Inx;. In
the example (pt™#¢, m!"*€) = (2.0,1.5) and N = 101 synthetic data are uniformly spaced on the interval
(0,1) with uncorrelated Normally-distributed noise with uniform variance o7 = (0.05)? (Figure 1, red
circles). The error surface E (p, m) (Figure 2, colors) has a global minimum at (p‘"*¢, m¢"%¢). The
parametric curve m(p) (Figure 2, blue curve) passes through the global minimum. The Newton’s method,
begun at the point py = 0.5, rapidly converges to the global minimum, following the parametric curve as
it does so (Figure 2, green curve with triangle at each iteration). This trajectory is different than the one
followed by Newton’s method when both p and m are allowed to freely vary (Figure 2, yellow curve with
circles at each iteration). Both trajectories rapidly converge (in about three iteration) to the global
minimum. The predicted data (Figure 1, black curve) fit the data well.
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Fig. 1. First exemplary inverse problem. The
observed data d (red dots) as a function of the
auxiliary variable x, together with the predicted
data for p, (black curve) and p®¢ (green curve)
See text for further discussion.
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Fig. 2. Error surface (colors) for the first
exemplary inverse problem in Figure 1. See text
for further discussion

Example 2. In a second example, we consider a simple Fourier analysis problem, with data kernel

Gij(p) = my + my sin(px;) + ms cos(px;) with position x on the interval (0,100), m*™¢ =
[1.0,0.2,03]T and p‘"™¢ = 6m/100. Normally-distributed noise with variance g = (0.05)? is used to
create synthetic observed data d°?S (Figure 3, red dots). The initial solution, with p, = 0.9 pt™€, fits the
data poorly (Figure 3, black curve), whereas the solution with p®t =~ 1.004 p*"™“¢ (Figure 3, green curve)

fits it well.
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Fig. 3. Second exemplary inverse problem. The observed data d (red dots) as a function of the auxiliary
variable x, together with the predicted data for p, (black curve) and p®t (green curve) See text for

further discussion.



Part 2. We now derive comparable derivatives for the Generalized Least Squares solution (Menke 2018,
equation 5.48):

m®? = G79d°’S + H9hP" = m® + m®  with
G 9=2"1GTC;' and H Y9 =Z 'H'C;! and Z=G'C;'G+HTC,'H

Case 1. When the data kernel G(p) depends on a parameter p, the derivative of the estimated model
parameters is:
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The normalized prediction error is & = C;%(d°PS — dP"®) = C;”*(d°PS — Gm®*) and its derivative is:
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The normalized error in prior information is € = Cj,#(hP™ — hP™®) = C;;%(hP™ — Hm®?) Its
derivative is:
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Case 2: When the prior information kernel H(p) depends on a parameter p, the derivatives are (by
analogy):
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Case 3: When the data variance C;(p) depends on a parameter p, the derivative is:
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The derivative of the normalized prediction error is € is:
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The derivation dC, "2 /@p cab be computed by solving the Sylvester equation that arises from
differentiating C;”* C;% = C3':
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The derivative of the normalized error in prior information ¥ is:
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Case 4: When the variance of prior information Cp,(p) depends on a parameter p, the derivatives are (by
analogy):
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I have not yet performed a numerical verification of these formula.



