Misfit Function for Bounding Data
Bill Menke, November 22, 2020

Suppose that a datum d; is measured to accuracy o; and that it represents an upper bound on a
model parameter m;; that is, d; = m;. The issue that I consider is now to quantify the misfit
function e;(d;, m;) so that the total error is E = }}; e;(d;, m;).

My derivation is based on the observation that the misfit can be related to the conditional
probability p(d;|m;) of the data given the model, as (Menke, 2018, Equation 9.6):
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and consequently e;(d;, m;) = —2 Inp(d;|m;). Note that in the case of the Normal p.d.f.
p(d;|m;) « exp{—2s0;%(d; — m;)?} that E = ¥;{o; *(d; — m;)?} is the usual least squared
error.

In the upper bound case with noise-free data, p(d;|m;) = H(d; — m;), where H(.) is the
Heaviside step function:
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That is, all values of d; that are less than m; have zero probability and all values of d; that are
greater than m; have the same non-zero probability. I note that this p.d.f. is un-normalizable,

but that’s not a problem here. Because of the logarithm in the definition of E, only relative
probabilities affect the minimum of E. Thus I am free to define the maximum to be unity.

When d; is Normally distributed, I still want p(d;|m;) = 0 when d; < m; and p(d;|m;) = 1
when d; > m;, as depicted in the d; and d, cases, respectively, below.
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However, when d; ~ m;, it makes sense to define p(d;|m;) to be proportional to the amount
of area to the might of m;, as depicted with the grey area below:
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Consequently, we have:
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Note that this choice also obeys the desired limits p — 0 as (d; — m;) > —coandp — 1 as
(d; —m;) » +oo. These functions are plotted in red in the graph, below (with the green curve
showing the result for a Normal p(d;|m;) of the same variance).
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The lower bound corresponds to ¢ = (—1) in the above equation. In the following example, a
grid search is used to determine the intercept a and slope b of a straight line, subject to
upper bound (green), lower bound (red) and point data (cyan). The true values are

(a,b) = (1,2), the true line is shown in black, the estimate values are (1.47,1.98) and the
best fit line is shown in blue. The example uses uniform variance o;=1.
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