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Part 1. Relationship between Gaussian Process Estimation and Generalized Least Squares. 

Generalized Least Squares (GLS) has two equivalent formulas.  One looks like ordinary least squares 

solution, in the sense that it contains the matrix sequence [𝐆T𝐆]−1𝐆T, where 𝐆 is the data kernel (Menke 

2018, eqn. 5.39).  The other looks like the minimum length solution, in the sense that it contains the 

matrix sequence 𝐆T[𝐆𝐆T]−1 (Menke, 2018, eqn. 5.38).  Here, I demonstrate that the Gaussian Process 

Regression (GPR) method (Rasmussen et al., 2016) is a special case of the second formula of Generalized 

Least Squares method.  The equivalence is demonstrated by making the choice 𝐆 = 𝐈 and by dividing the 

model parameters 𝐦 into two groups, a target group for which there is no associated data, and a training 

group with associated data 𝐝. 

The GLS equation is (Menke, 2018, eqn. 5.38): 

 

Making the following substitutions: 

 𝐦est = 𝐟 ̅and 〈𝐦〉 = 𝛍 and 𝐆 = 𝐈 and [cov 𝐦]A = 𝐊 and  [cov 𝐝] = 𝜎2𝐈 

and [cov 𝐠] = 0  and  𝐝obs = 𝐲 

leads to: 

𝐆−g = 𝐊 {𝐊 + 𝜎2𝐈 }−𝟏 

𝐟̅ = 𝛍 + 𝐆−g(𝐲 − 𝛍) = 𝛍 + 𝐊 {𝐊 + 𝜎2𝐈 }−𝟏(𝐲 − 𝛍) 

 

Comparing this result to the one for Gaussian Process Regression (GPR) (Rasmussen et al., 2016): 

 

we find that the two are identical, except that the GPR formula distinguishes model parameters that have 

no associated data (the target, indicated with a star) from those that are supported by observations (the 

training data, indicated by the lack of a star). This difference can be eliminated by considering the GLS 

model parameters ordered into a first stared group with no associated data and a second primed group 

with associated data. We define a rectangular data kernel 𝐆: 

𝐆 = [𝟎 𝐈] 

so that 𝐆𝐦 = 𝐝′, a complementary rectangular selection matrix 𝐌 as: 

𝐌 = [𝐈 𝟎] 

so that 𝐌𝐦 = 𝐦∗. We also define a covariance matrix: 



[cov 𝐦]A = [
𝐊(X∗, X∗) 𝐊(X∗, X′)

𝐊(X′, X∗) 𝐊(X′, X′)
] 

Then components of the GLS equation become: 

𝐌𝐦est = 𝐟̅∗    and     𝐆〈𝐦〉 = 𝛍∗    and    𝐆[cov 𝐦]A𝐆T = 𝐊(X′, X′) 

𝐌[cov 𝐦]A𝐆T = [𝐈 𝟎] [
𝐊(X∗, X∗) 𝐊(X∗, X′)

𝐊(X′, X∗) 𝐊(X′, X′)
] [

𝟎
𝐈

] = [𝐈 𝟎] [
𝐊(X∗, X′)

𝐊(X′, X′)
] = 𝐊(X∗, X′) 

Now, the GLS equation exactly matches the GPE equation: 

 

𝐟̅∗ = 𝐊(X∗, X′) + 𝐊(X∗, X′) {𝐊(X∗, X′) + 𝜎2𝐈 }−𝟏(𝐲 − 𝛍) 

(after recognizing that a primed variable in the equation above is the same as an un-starred variable in the 

GPE equation). 

The equivalence is no surprise to me, for both methods use Bayes’ theorem to implement prior 

information and both are based on Normal distributions. 

Part 2. Existence of the solution.  We consider the case where all model parameters are observed, so that 

the generalized inverse 𝐆−g is the 𝑀 × 𝑀 matrix: 

𝐆−g = 𝛾2𝐂[𝛾2𝐂 + 𝜎2𝐈]
−1

= 𝐂 [𝐂 + 𝛽2𝐈]
−1

    with    𝛽2 =
𝜎2

𝛾2
 

Here 𝛾2𝐂 is the signal covariance matrix, with 𝐶𝑖𝑖 = 1, so that 𝛾2 represents variance.  The 

parameter 𝜎2 is the variance of uncorrelated noise, so that 𝛽−2 is the mean-squared signal-to-

noise ratio. 

We first note some properties of 𝐂: (A) Because 𝐂 is a normalized covariance matrix, its 

diagonal elements must be non-negative in all coordinate systems.  Consequently, its eigenvalues 

𝜆𝑖 are non-negative. (B) Since the quantity tr(𝐂) 𝑀⁄ = 1 is invariant under coordinate rotations, 

the eigenvalues 𝜆𝑖 must “straddle” unity; that is, except for the special case of 𝐂 = 𝐈, where all 

eigenvalues 𝜆𝑖 = 1, some eigenvalues will satisfy 𝜆𝑖 > 1 and others 𝜆𝑖 < 1.  We will assume 

that the 𝜆𝑖s are arranged in descending order. 

The matrices 𝐂 and [𝐂 + 𝜀2𝐈] are simultaneously diagonalizable by the rotation associated with 

the eigenvector matrix 𝐕 of 𝐂.  Consequently, 𝐆−g = 𝐕𝐃𝐕T
, where 𝐃 is a diagonal matrix with 

elements: 

𝐷𝑖𝑖 =
𝜆𝑖

𝜆𝑖 + 𝛽2
 

For non-zero values of 𝛽2, the denominator is never zero, since 𝜆𝑖 ≥ 0.  Furthermore, 

𝐷𝑖𝑖(𝜆𝑖 = 0) = 0    and    lim
𝜀2→0
𝜆𝑖>0

𝐷𝑖𝑖 = 1    and    lim
𝜀2→∞

𝐷𝑖𝑖 = 0 



The limit when 𝛽2 → 0, 𝜆𝑖 = 0 is a removable singularity with a value of unity. Consequently, 

0 ≤ 𝐷𝑖𝑖 ≤ 1 (Figure 1).  The matrix 𝐆−g exists and is well-behaved. 

Values near these extremes can be calculated with perturbation theory: 

if    𝛽2 ≪ 𝜆𝑖   then   𝐷𝑖𝑖 =
1

1 + 𝛽2 𝜆𝑖⁄
≈ 1 − 𝛽2 𝜆𝑖⁄  

if    𝛽2 ≫ 𝜆𝑖   then    𝐷𝑖𝑖 =
𝜆𝑖 𝛽2⁄

1 + 𝜆𝑖 𝛽2⁄
≈ (𝜆𝑖 𝛽2⁄ )(1 − 𝜆𝑖 𝛽2⁄ ) = 𝜆𝑖 𝛽2⁄ − 𝜆𝑖

2 𝛽4⁄  

 

Figure 1.  Exemplary behavior of 𝐷𝑖𝑖 in the case where some 𝜆𝑖s are much larger than 𝛽2 and 

others are much smaller.  (A) Plot of eigenvalues ln 𝜆𝑖 versus indices 𝑖. (B) Plot of 𝐷𝑖𝑖. Note that 

𝐷𝑖𝑖 is between zero and unity. 

 

Figure 1.  Exemplary behavior of 

𝐷𝑖𝑖 in the case where some 𝜆𝑖s are 

much larger than 𝛽2 and others are 

much smaller.  (A) Plot of 

eigenvalues ln 𝜆𝑖 versus indices 𝑖. 
(B) Plot of 𝐷𝑖𝑖. Note that 𝐷𝑖𝑖 is 

between zero and unity. 
 

 

Part 3. Impulse Response in the Continuum Limit. 

The GLS equation has two parts: 

𝐦 = 𝐂𝛌    with   [𝜎2𝐈 + 𝐂] 𝛌 = 𝐝   and     [cov 𝐦]A = 𝛾2𝐂 

Here, we assume that the matrix 𝐂 has a main diagonal of unity, so that the variance at zero lag is 𝛾2. We 

now take the continuum limit, with 𝐦 becoming 𝑚(𝑥), 𝛌 becoming 𝜆(𝑥), 𝐝 becoming 𝑑(𝑥), and 𝛾2𝐂 

becoming 𝛾2(𝑐(𝑥) ∗): 

𝑚(𝑥) = 𝛾2𝑐(𝑥) ∗ λ(𝑥)    with   σ2λ(𝑥) + 𝛾2𝑐(𝑥) ∗ λ(𝑥) =  𝑑(𝑥) 

Here, the normalized auto-covariance function 𝑐(𝑥) is unity for zero lag. Note for the low-noise case, 

σ2 ≪ 𝛾2 and 𝑚(𝑥) = 𝑑(𝑥), whereas for the high-noise case, 𝛾2 ≪ σ2 and 𝑚(𝑥) =  (𝛾/σ)2𝑐(𝑥) ∗

𝑑(𝑥). The solution for arbitrary σ2 can be found by Fourier transforming position 𝑥 to wavenumber 𝑘.  

Consider the impulse response case, were 𝑑(𝑥) = 𝛿(𝑥): 

𝑚(𝑘) = 𝛾2𝑐(𝑘)λ(𝑘)     and     λ(𝑘) =  
1

𝛾2𝑐(𝑘) + σ2
 

so     𝑚(𝑘) =
𝛾2𝑐(𝑘)

𝛾2𝑐(𝑘) + σ2
=

𝑐(𝑘)

𝑐(𝑘) + β2
      with      β2 =

σ2

𝛾2
 



For the moderate-noise case, with σ2 > 𝛾2 and   β2 > 1, we expand  𝑚(𝑘) in a Taylor series: 

𝑚(𝑘) =
β−2𝑐(𝑘)

[1 + β−2𝑐(𝑘)]
= β−2𝑐(𝑘)[1 − β−2𝑐(𝑘) + β−4𝑐2(𝑘) − β−6𝑐3(𝑘) + ⋯ ] = 

= β−2𝑐(𝑘) − β−4𝑐2(𝑘) + β−6𝑐3(𝑘) − β−8𝑐4(𝑘) + ⋯ 

Now take inverse Fourier transform: 

𝑚(𝑥) = β−2𝑐(𝑥) − β−4𝑐(𝑥) ∗ 𝑐(𝑥) + β−6𝑐(𝑥) ∗ 𝑐(𝑥) ∗ 𝑐(𝑥) − ⋯ 

Now consider the special case, where 𝑐(𝑥) = 𝑔(𝑥, 𝑠) with a Gaussian function 𝑔(𝑥, 𝑠) ≡

exp{− 𝑥2 (2𝑠2)⁄ }.  As is done with probability density functions, we define its half-width 𝑠 is in terms of 

its moments with respect to the origin; that is, 𝑠2 = 𝑀2 𝑀0⁄  where 𝑀0 is the zeroth moment (area) and 𝑀2 

is its second moment (variance). 

 Note that 𝑔(𝑥, 𝑠) = √2𝜋𝑠2 𝑁(𝑥, 𝑠) where 𝑁(𝑥, 𝑠) is the Normal distribution. Then, from the rule for 

convolutions of Normal distributions: 

𝑁(𝑥, 𝑠) ∗ 𝑁(𝑥, 𝛾, 𝑠) = 𝑁(𝑥, √2𝑠) 

we find: 

𝛾2𝑐(𝑥) ∗ 𝛾2𝑐(𝑥) = 2𝜋𝑠2𝛾4𝑁(𝑥, 2𝑠) =
2𝜋𝑠2𝛾4

√2𝜋𝑠2
𝑔(𝑥, √2𝑠) = √𝜋𝑠2𝑔(𝑥, √2𝑠) 

𝑚(𝑥) = β−2𝑔(𝑥, 𝑠) − β−4√𝜋𝑠2𝑔(𝑥, √2𝑠) + ⋯ 

Note that the second term is a Gaussian that wider than, and has an opposite sign from, the one in the first 

term.  Its effect is to produce side-lobes in the impulse response. 

Part 4. Impulse response with a Gaussian auto-covariance function. 

We consider the special case where 𝑐(𝑥) is the Gaussian function: 

𝑐(𝑥) = exp(−½𝑠−2𝑥2)       and     𝑐(𝑘) = √2𝜋𝑠 exp(−½𝑠2𝑘2)     

where 𝑠 is half-width.  The Fourier transformed solution is: 

𝑚(𝑘) =
𝑐(𝑘)

𝑐(𝑘) + β2
=

exp(−½𝑘2𝑠2)    

exp(−½𝑘2𝑠2) + η2
=

1

1 + η2 exp(½𝑘2𝑠2) 
    with    η2 =

β2

√2𝜋𝑠
 

Note that since 𝑐(𝑥) is a real, symmetric function, so is 𝑐(𝑘). The Fourier transformed solution is 

well behaved, in the sense that: 

lim
𝑘→0

𝑚(𝑘) =
1

1 + η2
≡ 𝐴    and      lim

𝑘→±∞
𝑚(𝑘) = 0 

The zero-wavenumber limit yields the area 𝐴 beneath 𝑚(𝑥), which satisfies 𝐴 ≤ 1 .  For small values of  

η2, the area 𝐴 ≈ 1, and for large values of  η2, 𝐴 ≈ η−2. 

Although I have not been able to invert 𝑚(𝑘) to 𝑚(𝑥), I offer the following analysis of its behavior.  

First, write: 



𝑚(𝑘) = 𝑎(𝑘) 𝑏(𝑘)    with    𝑎(𝑘) =
1

η2 + 𝑏(𝑘)
    and     𝑏(𝑘) = exp(−½𝑠2𝑘2) 

so that 𝑚(𝑥) = 𝑎(𝑥) ∗  𝑏(𝑥).  Note that 𝑏(𝑘) has a maximum of 𝑏𝑚𝑎𝑥 = 1 at the origin and 

monotonically decreases with 𝑘. Consequently, 𝑎(𝑘) monotonically increases with 𝑘 from a minimum of 

(η2 + 1)−1 at the origin to a maximum of 𝑎𝑚𝑎𝑥 = η−2 at infinity. Now write 𝑎(𝑘) = η−2[1 − 𝑓(𝑘)], 

with: 

𝑓(𝑘) = 1 − η2𝑎(𝑘) =
𝑏(𝑘)

η2 + 𝑏(𝑘)
 

The “bump function” 𝑓(𝑘) (Figure 2) is everywhere non-zero, has a maximum value of 𝑓𝑚𝑎𝑥 =

1/(η2 + 1)  at the origin, and monotonically decreases towards zero as 𝑘 → ∞. While we do not calculate 

their values, the zeroth and second moment, 𝑀0[𝑓(𝑘)] and 𝑀2[𝑓(𝑘)], are positive.  Consequently, by the 

entropic uncertainty principle, 𝑀2[𝑓(𝑥)] > 0, too.  The zeroth moment 𝑀𝑜[𝑓(𝑥)] = 𝑓𝑚𝑎𝑥, and 

𝑓(𝑥 = 0) = 𝑀0[𝑓(𝑘)] > 0, since the since the area under a function is the zero-wavenumber value of its 

Fourier transform and vice versa. 

 

Figure 2.  In our analysis of the Gaussian case, the Fourier transform of solution is decomposed into a 

several functions.  (A) The Gaussian function 𝜂−2𝑔(𝑘) (black curve). (B) The function 𝑎(𝑘) (black 

curve). (C) The function 𝜂−2𝛿(𝑘) (black curve). (D) The “bump” function 𝜂−2𝑓(𝑘) (black curve).  

Maximum values (green line) and the point 𝑘 = 1 𝑠⁄  (red bar) are shown. This example uses 𝛽2 = 1 and 

𝑠2 = 25. See text for further discussion. 



 

After taking the inverse Fourier transform, the solution is found to be: 

𝑚(𝑥) =  η−2{𝑏(𝑥) −  𝑏(𝑥)  ∗ 𝑓(𝑥)} 

Consequently, η2𝑚(𝑥) consist of the difference between two terms, each of which is positive at 𝑡 = 0. 

The first term is the Gaussian 𝑏(𝑥), which has unit area and half-width 𝑠.. The second term is a 

convolution with area (η2 + 1)−1 ≤ 1, since by moment-convolution theorem 𝑀0[𝑏(𝑥)  ∗ 𝑓(𝑥)] =

𝑀0[𝑏(𝑥)] 𝑀0[𝑓(𝑥)].  By the moment-convolution theorem for symmetric functions, the half-width of the 

second term satisfies: 

ℎ2 =
𝑀2[𝑏(𝑥)  ∗ 𝑓(𝑥)]

𝑀0[𝑏(𝑥)  ∗ 𝑓(𝑥)]
=

𝑀2[𝑏(𝑥)]

𝑀0[𝑏(𝑥)]
+  

𝑀2[𝑏(𝑥)]

𝑀0[𝑏(𝑥)]
>

𝑀2[𝑏(𝑥)]

𝑀0[𝑏(𝑥)]
= 𝑠2 

Consequently, the second term is wider than the first. The solution 𝑚(𝑥) is a function with positive area, 

a positive central peak and at least one set of side-lobes. 

The Fourier transform can also be inverted by numerical means (Figure 3). 

 

 
Figure 3.  Impulse response for the Gaussian case for variance 𝑠2 = (8)2 and for various 

values of the logarithmic signal-to-noise ratio log10(𝛽−2) (number above graph).  Note large 

sidelobes at the larger values of the ratio. 

 

 

Part 5. Impulse response with an Exponential auto-covariance function. 

We consider the special case of exponential auto-covariance: 



𝑐(𝑥) = exp(−𝛼|𝑥|)    and    𝑐(𝑘) =
2𝛼

𝑘2 + 𝛼2
   and    𝛼 (units of 1/length) 

Using the relation: 

𝑐(𝑘) + 𝛽2 =
2𝛼

𝑘2 + 𝛼2
+

𝛽2𝑘2 + 𝛽2𝛼2

𝑘2 + 𝛼2
=

𝛽2𝑘2 + (2𝛼 + 𝛽2𝛼2)

𝑘2 + 𝛼2
 

We find that: 

𝑚(𝑘) =
𝑐(𝑘)

𝑐(𝑘) + 𝛽2
=

2𝛼

𝑘2 + 𝛼2
 ×

𝑘2 + 𝛼2

𝛽2𝑘2 + (2𝛼 + 𝛽2𝛼2)
=

2𝛼

𝛽2𝑘2 + (2𝛼 + 𝛽2𝛼2)
= 

=

(
𝛼

𝛽2) ((
2𝛼
𝛽2) + 𝛼2)

−½

2 ((
2𝛼
𝛽2) + 𝛼2)

½

𝑘2 + ((
2𝛼
𝛽2) + 𝛼2)

= 

= (
𝛼

𝜌𝛽2
)

2𝜌

𝑘2 + 𝜌2
    with  𝜌 =  ((2𝛼/𝛽2) + 𝛼2)

½
 

Inverting the Fourier Transform yields: 

 𝑚(𝑥) =
𝛼

𝜌𝛽2
exp(−𝜌|𝑥|) 

The decay rate 𝜌 ≥ 𝛼 and that 𝜌 → 𝛼 as 𝛼𝛽2 → 0. The area 𝐴 under 𝑚(𝑥) is: 

𝐴 = ∫ 𝑚(𝑥)
+∞

−∞

𝑑𝑥 =
2𝛼

𝜌𝛽2
∫ exp(−𝜌𝑥)

+∞

0

𝑑𝑥 =
−2𝛼

𝜌2𝛽2
exp(−𝜌𝑥)|0

+∞ =
2𝛼

𝜌2𝛽2
= 

=
2𝛼

2𝛼 + 𝛼2𝛽2
=

1

1 + ½𝛼𝛽2
 

 

Note that  𝐴 decreases as 𝛼𝛽2 increases and that 𝐴 → 1 as 𝛼𝛽2 → 0 (Figure 4). 
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Figure 4.  Impulse response for the Exponential case for decay rate 𝛼 = √2 𝑠⁄  corresponding 

to variance 𝑠2 = (8)2 and for various values of the logarithmic signal-to-noise ratio 

log10(𝛽−2) (number above graph).  Note absence of sidelobes. 
 

 

 

 


