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I consider a causal Bateman-style attenuation operator with quality factor of the form: 

𝑄(𝑓) = 𝑄0 (
𝑓

𝑓0
)

𝛼

 

where 𝑄0 is the quality factor at reference frequency 𝑓0 and 0 < 𝛼 < 1 is an exponent. 

The following text is from Levi Borevitz’s Summer Intern Project (Borevitz and Menke, 2020): 

[Start copied text] 

Starting with  𝑢0
𝑜𝑏𝑠(𝑡) we take its Fourier transform 

�̂�0
𝑜𝑏𝑠(𝜔) = ∫ 𝑢0

𝑜𝑏𝑠(𝑡)  exp{−𝑖𝜔𝑡} 𝑑𝑡
+∞

−∞

 

The unattenuated pulse �̂�0(𝜔) is changed into the attenuated pulse �̂�1(𝜔) through multiplication 

by the Bateman function 𝐵(𝐴, 𝑡0, 𝑡0
∗, 𝛼, 𝜔), which we abbreviate as 𝐵(𝜔): 

�̂�0
𝑝𝑟𝑒(𝜔) = 𝐵(𝜔) �̂�0

𝑜𝑏𝑠(𝜔) 

where   𝐵(𝜔) = 𝐴 exp{−𝑎} exp{−𝑖𝜔(𝜑 + 𝑡0)}     and  

𝑎 = ½𝜔𝑡∗    and   𝜑 = 𝑏𝑐 (
𝜔

𝜔0
)

−𝛼

   and     𝑏 = ½𝑡0
∗      and    𝑐 = cot(½𝜋𝛼) 

The attenuated pulse 𝑢0
𝑝𝑟𝑒(𝑡) is the inverse Fourier transform of �̂�0

𝑝𝑟𝑒(𝜔): 

𝑢0
𝑝𝑟𝑒(𝑡) =

1

2𝜋
∫ �̂�0

𝑝𝑟𝑒(𝜔, 𝐴) exp{+𝑖𝜔𝑡} 𝑑𝜔
+∞

−∞

=
1

2𝜋
∫ 𝐵(𝜔, 𝐴) �̂�0

𝑜𝑏𝑠(𝜔) exp{+𝑖𝜔𝑡} 𝑑𝜔
+∞

−∞

 

Differentiation with respect to parameters 𝐴,  𝑡0,  𝑡0
∗  and 𝛼 is performed inside the 

integral.  For example, 

𝜕𝑢0
𝑝𝑟𝑒

𝜕𝐴
=

1

2𝜋
∫

𝜕𝐵

𝜕𝐴
 �̂�0(𝜔) exp{+𝑖𝜔𝑡} 𝑑𝜔

+∞

−∞

 



Here, the derivative 𝜕𝑢1 𝜕𝐴⁄  is understood to be a function of time 𝑡 and the derivative 𝜕𝐵 𝜕𝐴⁄  is 

understood to be a function of frequency 𝜔.  Derivatives of 𝐵(𝜔) with respect to 𝐴,  𝑡0,  𝑡0
∗  and 𝛼 

are: 

𝜕𝐵

𝜕𝐴
= exp{−𝑎} exp{−𝑖𝑤(𝜑 + 𝑡0)} 

𝜕𝐵

𝜕 𝑡0
= −𝐴 𝑖 𝜔 exp{−𝑎} exp{−𝑖𝑤(𝜑 + 𝑡0)} 

𝜕𝐵

𝜕𝑡0
∗ = −𝐴 (

𝜔

𝜔0
)

−𝛼

 exp{−𝑎} exp{−𝑖𝑤(𝜑 + 𝑡0)} (𝜋 𝑓 +
1

2
𝑖 𝜔  cot (𝑐)) 

𝜕𝐵

𝜕𝛼
= 𝐴 exp{−𝑎} exp{−𝑖𝑤(𝜑 + 𝑡0)}(

1

4
𝑖 𝜔 𝜋𝑡0

∗𝑓 (
𝜔

𝜔0
)

−𝛼

ln (
𝜔

𝜔0
) + ( 𝜋𝑡0

∗ (
𝜔

𝜔0
)

−𝛼

csc2 (½𝜋𝛼)

+ c ln (
𝜔

𝜔0
)) )  

[End copied text] 

I recoded Levi’s MATLAB software into PYTHON.  The function bateman() takes unattenuated 

and undelayed 𝑢0(𝑡), together with the four parameters 𝐴,  𝑡0,  𝑡0
∗  and 𝛼, and return an attenuated 

and delayed pulse 𝑢(𝑡) and the four derivatives 𝜕𝑢 𝜕𝐴⁄ , 𝜕𝑢 𝜕𝑡0⁄ , 𝜕𝑢 𝜕𝑡0
∗⁄  and 𝜕𝑢 𝜕𝛼⁄  (Figure 1). 

--------------------- 

 

 



Figure 1A. Unattenuated and undelayed pulse 𝑢0(𝑡) (blue) and attenuated and delayed pulse 

𝑢(𝑡) (red). This case if for 𝐴 = ½,  𝑡0 = 5,  𝑡0
∗ = ½  and 𝛼 = 0.4 using a Gaussian pulse of 

standard deviation 𝜎𝑡 = 0.25 and a 𝑓0 = ½(2𝜋𝜎𝑡)−1 (one half the bandwidth of the pulse). 

 

 

Figure 1B. The derivative 𝜕𝑢 𝜕𝐴⁄ , computed using the analytic formula in bateman() (black) and 

via the finite difference method (red). 



 

Figure 1C. The derivative 𝜕𝑢 𝜕𝑡0⁄ , computed using the analytic formula in bateman() (black) and 

via the finite difference method (red). 

 



Figure 1D. The derivative 𝜕𝑢 𝜕𝑡0
∗⁄ , computed using the analytic formula in bateman() (black) 

and via the finite difference method (red). 

 

Figure 1E. The derivative 𝜕𝑢 𝜕𝛼⁄ , computed using the analytic formula in bateman() (black) and 

via the finite difference method (red). 

---- 

In all cases, the analytic calculation of the derivative matches the result of a finite difference 

calculation very closely.  Note that the shape of the derivatives 𝜕𝑢 𝜕𝑡0⁄  and − 𝜕𝑢 𝜕𝛼⁄  are similar 

to one another, implying that 𝑡0 and 𝛼 will trade off in an inversion. 

I also coded frequency-domain versions of the derivatives in the function fbateman(): 𝜕𝑠 𝜕𝐴⁄ , 

𝜕𝑠 𝜕𝑡0
∗⁄  and 𝜕𝑠 𝜕𝛼⁄  where 𝑠(𝑓) = |�̂�(𝑓)| is the amplitude spectral density (a.s.d.) (Figure 2). 

 

---- 



 

Figure 2A. Amplitude spectral density (a.s.d) of unattenuated and undelayed pulse 𝑢0(𝑡) (black) 

and attenuated and delayed pulse 𝑢(𝑡) (red). This case if for 𝐴 = ½,  𝑡0 = 5,  𝑡0
∗ = ½  and 𝛼 =

0.4 using a Gaussian pulse of standard deviation 𝜎𝑡 = 0.25 and a 𝑓0 = ½(2𝜋𝜎𝑡)−1 (one half the 

bandwidth of the pulse). 

 

 

Figure 2B. The derivative 𝜕𝑠 𝜕𝐴⁄ , computed using the analytic formula in fbateman() (black) and 

via the finite difference method (red). 

 



 

 

Figure 2C. The derivative 𝜕𝑠 𝜕𝑡0
∗⁄ , computed using the analytic formula in fbateman() (black) 

and via the finite difference method (red). 

 

 

Figure 2D. The derivative 𝜕𝑠 𝜕𝛼⁄ , computed using the analytic formula in fbateman() (black) 

and via the finite difference method (red). 

------------------------- 



In all cases, the analytic calculation of the derivative matches the result of a finite difference 

calculation very closely.  The shapes are sufficiently dissimilar that an inversion should work 

reasonably well. 

Finally, I coded a test inversion that consisted of these steps: 

(1) Estimate lag 𝑡0 by cross-correlating pulse 𝑢(𝑡) and 𝑢0(𝑡). 

(2) Estimate 𝐴 by regressing 𝑢(𝑡) against 𝑢0(𝑡 − 𝑡0). 

(3) Estimate 𝑡0
∗ by regressing ln 𝑠(𝑓) against ln 𝑠0(𝑓) in the frequency band (𝑓2, 𝑓2) at fixed 𝛼 =

½. 

(4) Refine estimates of 𝐴, 𝑡0
∗ and 𝛼 using fbateman() and Newton’s method. 

(5) Refine estimates of 𝐴, 𝑡0 and 𝑡0
∗ using bateman() and Newton’s method 

(6) Refine estimates of 𝐴, 𝑡0, 𝑡0
∗ and 𝛼 using bateman() and Newton’s method and prior 

information that 𝑡0 shouldn’t change much. 

The inversion produces accurate results (Table 1 and Figure 3). 

---- 

Table 1.  Error improvement for each step in the inversion process. 

 

------ 



 

Fig. 3A.  Results of inversion, true pulse 𝑢(𝑡) (black) and estimated pulse 𝑢(𝑡) (red). 

 

Fig. 3B.  Results of inversion, amplitude spectral densities of true pulse 𝑢(𝑡) (black) and 

estimated pulse 𝑢(𝑡) (red). 
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