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Ray equation for ray with position 𝐱(𝑠), arc-length 𝑠, and slowness 𝑢(𝐱) 

𝑑

𝑑𝑠
𝑢

𝑑𝐱

𝑑𝑠
= ∇𝑢 

𝑑2𝐱

𝑑𝑠2
+

𝑑𝐱

𝑑𝑠
(

𝑑𝐱

𝑑𝑠
∙ 𝑢−1∇𝑢) = 𝑢−1∇𝑢 

Define: 𝑓 ≡ ln 𝑢   so   ∇𝑓 = 𝑢−1∇𝑢   and the ray equation becomes: 

 
𝑑2𝐱

𝑑𝑠2
+

𝑑𝐱

𝑑𝑠
(

𝑑𝐱

𝑑𝑠
∙ ∇𝑓) = ∇𝑓 

Case 1: Cartesian coordinates (𝑥, 𝑦): 

Spatial variation of 𝑓 and its gradient, in Cartesian coordinated, with 𝜀 a small parameter: 

𝑓 = 𝑓0 + 𝜀𝑏𝑦(𝑥)𝑦 + ½𝜀𝐶𝑦𝑦(𝑥)𝑦2 

∇𝑓 = 𝜀 [
𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦

𝑏𝑦 + 𝐶𝑦𝑦𝑦
] 

Position vector for a ray that is initially parallel to the 𝑥-axis written inters of an unperturbed part 

and a perturbed part.  Note that since 𝑑𝐱 𝑑𝑠⁄  is a unit vector that initially is [1 0]𝑇, only its 𝑦-

component can have a first order perturbation. 

𝐱 = [
𝑥0(𝑠)

𝑦0 + 𝜀𝑦1(𝑠)
] 

𝑑𝐱

𝑑𝑠
= [

𝑑𝑥0 𝑑𝑠⁄

𝜀(𝑑𝑦1 𝑑𝑠⁄ )
] 

𝑑2𝐱

𝑑𝑠2
= [

𝑑2𝑥0 𝑑𝑠2⁄

𝜀(𝑑2𝑦1 𝑑𝑠2⁄ )
] 

Second term on l.h.s. of ray equation: 

𝑑𝐱

𝑑𝑠
∙ ∇𝑓 = [

𝑑𝑥0 𝑑𝑠⁄

𝜀(𝑑𝑦1 𝑑𝑠⁄ )
] ∙ 𝜀 [

𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦0 + 𝜀(𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )

𝑏𝑦 + 𝐶𝑦𝑦𝑦0 + 𝜀𝐶𝑦𝑦𝑦1
] 

= 𝜀(𝑑𝑥0 𝑑𝑠⁄ )(𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦0) + 𝑂(𝜀2) 

𝑑𝐱

𝑑𝑠
(

𝑑𝐱

𝑑𝑠
∙ ∇𝑓) = [

𝜀(𝑑𝑥0 𝑑𝑠⁄ )2

𝑂(𝜀2)
] (𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦0) + 𝑂(𝜀2) 

Ray equation written to first order in 𝜀: 



[
𝑑2𝑥0 𝑑𝑠2⁄

𝜀(𝑑2𝑦1 𝑑𝑠2⁄ )
] + [

𝜀(𝑑𝑥0 𝑑𝑠⁄ )2

𝑂(𝜀2)
] (𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦0) = 𝜀 [

𝑑𝑏𝑥 𝑑𝑥⁄ + (𝑑𝐶𝑦𝑦 𝑑𝑥⁄ )𝑦0

𝑏𝑦 + 𝐶𝑦𝑦𝑦0
] 

Zeroth order ray equation: 

𝜀0 :    
𝑑2𝑥0

𝑑𝑠2
= 0      or    𝑥 = 𝑠   and   𝑑𝑥 𝑑𝑠⁄ = 1 

Zeroth order ray equation for two rays, initially at 𝑦0
𝐴 and 𝑦0

𝐵, respectively: 

𝜀1 :   
𝑑2𝑦1

𝐴

𝑑𝑠2
= 𝑏𝑦 + 𝐶𝑦𝑦𝑦0

𝐴 

𝜀1 :   
𝑑2𝑦1

𝐵

𝑑𝑠2
= 𝑏𝑦 + 𝐶𝑦𝑦𝑦0

𝐵 

Equation for the difference, ∆𝑦 and its solution: 

∆𝑦 = 𝑦𝐵 − 𝑦𝐴 = (𝑦0
𝐵 − 𝑦0

𝐴) + 𝜀(𝑦1
𝐵 − 𝑦1

𝐴) = ∆𝑦0 + 𝜀∆𝑦1 

𝜀1 :   
𝑑2∆𝑦1

𝑑𝑠2
= 𝐶𝑦𝑦∆𝑦0 

𝑑∆𝑦1

𝑑𝑠
= ∆𝑦0 ∫ 𝐶𝑦𝑦(𝑠′) 𝑑𝑠′

𝑠

0

 

∆𝑦1 = ∆𝑦0 ∫ [∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

]

𝑠

0

𝑑𝑠′ 

Solution for constant 𝐶𝑦𝑦:    

∆𝑦1 = ½∆𝑦0𝐶𝑦𝑦𝑠2 

An approximation that removes one integral.  Using integration by parts we can write: 

∫ 𝑢 𝑑𝑣"
𝑠′

0

= 𝑢𝑣 − ∫  𝑣 𝑑𝑢
𝑠′

0

    with   𝑢 = 𝐶𝑦𝑦  and  𝑑𝑣 = 1 𝑑𝑠 

∫ 𝐶𝑦𝑦 1 𝑑𝑠"
𝑠′

0

= 𝑠′𝐶𝑦𝑦(𝑠′) − ∫  𝑠
𝑑𝐶𝑦𝑦

𝑑𝑠
 𝑑𝑠"

𝑠′

0

≈ 𝑠′𝐶𝑦𝑦(𝑠′)   when  
𝑑𝐶𝑦𝑦

𝑑𝑠
 small 

∆𝑦1 ≈ ∆𝑦0 ∫ 𝑠′𝐶𝑦𝑦(𝑠′)

𝑠

0

𝑑𝑠′ 

An approximate solution (to first order in 𝜀) for ∆𝑦 involving an exponential: 

𝜀
𝑑∆𝑦1

𝑑𝑠
=

𝑑∆𝑦

𝑑𝑠
= 𝜀∆𝑦0 ∫ 𝐶𝑦𝑦(𝑠′) 𝑑𝑠′

𝑠

0

≈ 𝜀∆𝑦 ∫ 𝐶𝑦𝑦(𝑠′) 𝑑𝑠′
𝑠

0

 



𝑑∆𝑦

𝑑𝑠
≈ 𝜀∆𝑦 ∫ 𝐶𝑦𝑦(𝑠′) 𝑑𝑠′

𝑠

0

 

𝑑∆𝑦

∆𝑦
≈ 𝜀 ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"

𝑠′

0

𝑑𝑠′ 

ln ∆𝑦 = 𝜀 ∫ ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

𝑑𝑠′
𝑠

0

 

∆𝑦 = ∆𝑦0 exp {𝜀 ∫ ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

𝑑𝑠′
𝑠

0

} ≈ ∆𝑦0 exp {𝜀 ∫ 𝑠′𝐶𝑦𝑦(𝑠′) 𝑑𝑠′
𝑠

0

} 

Proof that the approximate solution matches the exact solution to first order in 𝜀: 

∆𝑦 ≈ ∆𝑦0 (1 + 𝜀 ∫ ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

𝑑𝑠′
𝑠

0

) 

∆𝑦 − ∆𝑦0 = 𝜀∆𝑦1 = 𝜀∆𝑦0 ∫ ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

𝑑𝑠′
𝑠

0

 

∆𝑦1 = ∆𝑦0 ∫ ∫ 𝐶𝑦𝑦(𝑠") 𝑑𝑠"
𝑠′

0

𝑑𝑠′
𝑠

0

 

Given a point heterogeneity 𝐶𝑦𝑦 = 𝐶𝛿(𝑠 − 𝑠0), then for 𝑠 > 𝑠0: 

∆𝑦1 = 𝐶∆𝑦0 ∫ [∫ 𝛿(𝑠" − 𝑠0)  𝑑𝑠"
𝑠′

0

]

𝑠

0

𝑑𝑠′ = 𝐶∆𝑦0 ∫ 𝐻(𝑠′ − 𝑠0)

𝑠

0

𝑑𝑠′ = 𝐶∆𝑦0(𝑠 − 𝑠0) 

Thus, ∆𝑦1 grows linearly with distance from the heterogeneity.  This effect corresponds to ray 

divergence and convergence.  

 

 

Figure 1. Exact ray tracing through a 

medium with a Gaussian slowness anomaly.   

 

 

 

 

 

 



Figure 2. 𝐶𝑦𝑦 for the medium with a 

Gaussian slowness anomaly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Exact ∆𝑦1 (black), the first order approximation (red) and the single-integral 

approximation (green) at the ray endpoints.  The correspondence is deceptively good.  Placing 

the anomaly closer to or further from to the ray endpoints leads to misprediction of the amplitude 

of variation by a factor of two or more. 

 

Case 2: Polar coordinates (𝑟, 𝜃): 

Spatial variation of 𝑓 and its gradient, in polar coordinates, with 𝜀 a small parameter: 

𝑓 = 𝑓0 + 𝜀𝑏𝜃(𝑟)𝜃 + ½𝜀𝐶𝜃𝜃(𝑟)𝜃2 

∇𝑓 = [
𝜕𝑓 𝜕𝑟⁄

𝑟−1𝜕𝑓 𝜕𝜃⁄
] = 𝜀 [

𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃

𝑟−1𝑏𝑦 + 𝑟−1𝐶𝜃𝜃𝜃
] 



Position vector for a ray that is initially parallel to the 𝑟-axis written inters of an unperturbed part 

and a perturbed part.  Note that since 𝑑𝐱 𝑑𝑠⁄  is a unit vector that initially is [1 0]𝑇, only its 𝜃-

component can have a first order perturbation. 

[
r
𝜃

] = [
𝑟0(𝑠)

𝜃0 + 𝜀𝜃1(𝑠)
]    and   𝑑𝐱 = [

𝑑𝑟
𝑟𝑑𝜃

] 

𝑑𝐱

𝑑𝑠
= [

𝑑𝑟0 𝑑𝑠⁄

𝜀𝑟0(𝑑𝜃1 𝑑𝑠⁄ )
] 

𝑑2𝐱

𝑑𝑠2
= [

𝑑2𝑟0 𝑑𝑠2⁄

𝜀𝑟0(𝑑2𝑦1 𝑑𝑠2⁄ ) + 𝜀(𝑑𝑟0 𝑑𝑠⁄ )(𝑑𝜃1 𝑑𝑠⁄ )
] 

Second term on l.h.s. of ray equation: 

𝑑𝐱

𝑑𝑠
∙ ∇𝑓 = [

𝑑𝑟0 𝑑𝑠⁄

𝜀𝑟0(𝑑𝜃1 𝑑𝑠⁄ )
] ∙ 𝜀 [

𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃0 + 𝜀(𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃1

𝑟−1𝑏𝑦 + 𝑟−1𝐶𝜃𝜃𝜃0 + 𝜀𝑟−1𝐶𝜃𝜃𝜃1
] 

= 𝜀(𝑑𝑟0 𝑑𝑠⁄ )(𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃0) + 𝑂(𝜀2) 

𝑑𝐱

𝑑𝑠
(

𝑑𝐱

𝑑𝑠
∙ ∇𝑓) = [

𝜀(𝑑𝑟0 𝑑𝑠⁄ )2

𝑂(𝜀2)
] (𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃0) + 𝑂(𝜀2) 

Ray equation written to first order in 𝜀: 

[
𝑑2𝑟0 𝑑𝑠2⁄

𝜀𝑟0(𝑑2𝑦1 𝑑𝑠2⁄ ) + 𝜀(𝑑𝑟0 𝑑𝑠⁄ )(𝑑𝜃1 𝑑𝑠⁄ )
] + [

𝜀(𝑑𝑟0 𝑑𝑠⁄ )2

𝑂(𝜀2)
] (𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃0) 

= 𝜀 [
𝑑𝑏𝑥 𝑑𝑟⁄ + (𝑑𝐶𝜃𝜃 𝑑𝑟⁄ )𝜃

𝑟−1𝑏𝑦 + 𝑟−1𝐶𝜃𝜃𝜃
] 

Zeroth order ray equation: 

𝜀0 :    
𝑑2𝑟0

𝑑𝑠2
= 0      or    𝑟0 = 𝑠   and   𝑑𝑟0 𝑑𝑠⁄ = 1 

Zeroth order ray equation for two rays, initially at 𝜃0
𝐴 and 𝜃0

𝐵, respectively: 

𝜀1:   𝑠
𝑑2𝜃1

𝐴

𝑑𝑠2
+

𝑑𝜃1
𝐴

𝑑𝑠
= 𝑏𝑦 + 𝑠−1𝐶𝜃𝜃𝑦0

𝐴 

𝜀1:   𝑠 
𝑑2𝜃1

𝐵

𝑑𝑠2
 +

𝑑𝜃1
𝐵

𝑑𝑠
= 𝑏𝑦 + 𝑠−1𝐶𝜃𝜃𝑦0

𝐵 

Equation for the difference, ∆𝑦 and its solution: 

∆𝜃 = 𝜃𝐵 − 𝜃𝐴 = (𝜃0
𝐵 − 𝜃0

𝐴) + 𝜀(𝜃1
𝐵 − 𝜃1

𝐴) = ∆𝜃0 + 𝜀∆𝜃1 

𝜀1:   𝑠
𝑑2∆𝜃1

𝑑𝑠2
+

𝑑∆𝜃1

𝑑𝑠
= 𝑠−1𝐶𝜃𝜃∆𝜃0 



𝑠2
𝑑2∆𝜃1

𝑑𝑠2
+ 𝑠

𝑑∆𝜃1

𝑑𝑠
= 𝐶𝜃𝜃∆𝜃0 

𝑠
𝑑

𝑑𝑠
𝑠

𝑑∆𝜃1

𝑑𝑠
= 𝐶𝜃𝜃∆𝜃0 

∆𝜃1 = ∆𝜃0  ∫(𝑠′)−1 ∫(𝑠")−1𝐶𝜃𝜃𝑑𝑠"

𝑠′

0

𝑑𝑠′

𝑠

0

 

Defining ∆𝑦0 ≡ 𝑟0∆𝜃0  and  ∆𝑦1 ≡ 𝑟0∆𝜃1  and  𝐶𝑦𝑦 = 𝑟0
2𝐶𝜃𝜃, we find that: 

∆𝑦1 = ∆𝑦0  ∫(𝑠′)−1 ∫ 𝑠"𝐶𝑦𝑦𝑑𝑠"𝑑𝑠′

𝑠′

0

𝑠

0

 

For a constant 𝐶𝑦𝑦: 

∆𝑦1 = ∆𝑦0 𝐶𝑦𝑦 ∫(𝑠′)−1½(𝑠′)2

𝑠

0

𝑑𝑠′ = ∆𝑦0 𝐶𝑦𝑦 ∫ ½𝑠′

𝑠

0

𝑑𝑠′ = ¼∆𝑦0 𝐶𝑦𝑦𝑠2 

which differs from the Cartesian result by a factor of two. 

--- 

My thinking on this issue was inspired by Equation 3 of Dalton and Ekstrom (2006), Global 

models of surface wave attenuation, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, 

B05317, doi:10.1029/2005JB003997.  This paper cites Woodhouse, J. H., and Y. K. Wong 

(1986), Amplitude, phase and path anomalies of mantle waves, Geophys. J. R. Astron. Soc., 87, 

753–773, but I have not read that paper (yet). 


