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Amplitude Tomography requires that the derivative 𝑑2𝑓 𝑑𝑥2⁄  where 𝑓 = ln(𝑠) be approximated 

as a linear operator acting on 𝑠. We use the approximation ln(1 + 𝑡) ≈ 𝑡, valid when |𝑡| ≪ 1 to 

develop such a relationship.  Suppose that 𝑠 = 𝑠0 + ∆𝑠, where 𝑠0 is a constant, average value and 

∆𝑠 is spatially varying and small compared to 𝑠0.  Then: 
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Her, we have uses the identity ln(𝑎𝑏) =  ln(𝑎) + ln(𝑏).  Because only ∆𝑠 is spatially variable: 
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Figure: Comparison of exact derivative 𝑑2𝑓 𝑑𝑥2⁄  

(black) with one based on the approximation (red), for signals with ±1% (top) and ±10% 

(bottom) fluctuation. 

In practice, one computes the matrix of second derivatives (which is symmetric): 
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But one needs to know the derivative 𝑑2𝑠 𝑑𝜉 2⁄ , where 𝜉 is the direction perpendicular to the ray, 

as shown in Figure 2. 



 

Fig. 2. Ray geometry. The angle 𝜃 of the ray is measured counter-clockwise with respect to the 

𝑥-axis. 

Note that when the angle 𝜃 = 0, 𝑑2𝑠 𝑑𝜉 2⁄ = 𝑑2𝑠 𝑑𝑦 2⁄ ; that is, 𝐷22.  The matrix 𝐃 needs to be 

rotated to a new primed coordinate system: 

𝐃′ = 𝐑𝐃𝐑𝑻    with    𝐑 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] 

The second derivative in the 𝜉 direction is 𝐷′22, or: 
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I have checked this formula numerically on a test case ∆𝑠 = cos(𝑥) cos(2𝑦) and with 

𝑑2∆𝑠 𝑑𝜉 2⁄  calculated by the formula above and with finite differences. 


