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One way to analyze the relationship between a covariance matrix, 𝐂𝑚, and the corresponding 

weighting matrices, 𝐂𝑚
−½, is to take the limit in which the number of rows, 𝑁 → ∞, and the 

spacing in distance, ∆𝑥 → 0, so that the identity,  𝐂𝑚
−½𝐂𝑚

−½𝐂𝑚 = 𝐈, becomes the differential 

equation [Menke and Eilon, 2015; Menke and Creel, 2021]: 

𝒟†𝒟 𝑐(𝑥) = 𝛿(𝑥) 

(1) 

with boundary conditions, 𝑐(𝑥) → 0 as |𝑥| → ∞.  Here, the autocorrelation function, 𝑐(𝑥), is 

analogous to 𝐂𝑚, the differential operator, 𝒟, is analogous to 𝐂𝑚
−½, the Dirac function, 𝛿(𝑥), is 

analogous to 𝐈, and 𝑥 is lag. By specifying a 𝒟 and solving for 𝑐(𝑥), we have identified the 𝑐(𝑥) 

corresponding to a given 𝒟.  Unfortunately, when 𝒟 = d2 d𝑥2⁄ , the solution cannot satisfy the 

boundary conditions, because it is a polynomial, and no polynomial (except zero) goes to zero at 

±∞.  The best that we can do is to consider a differential operator that is only approximately a 

second derivative.  On possible choice is: 

𝒟 =
1

𝑎
(𝑠2 −

d2

d𝑥2
) 

(2) 

Here, 𝑠 is a scale parameter, and the constant, 𝑎, will be chosen later so that 𝑐(0) = 𝛾2, where 𝛾2 

is a variance. The condition under which (2) approximates a second derivative can be understood 

by considering the oscillatory function, 𝑦(𝑥) = 𝐴 cos(𝑘0𝑥).  Applying the operator yields: 

𝒟𝑦 =
1

𝑎
(𝑠2 −

d2

d𝑥2
) 𝑦 =

1

𝑎
(𝑠2 + 𝑘0

2)𝑦 

(3) 

Increasing the wavenumber, while holding the scale parameter fixed, leads to the limit: 

lim
𝑘0

2→∞
𝒟𝑦 =

1

𝑎
𝑘0

2𝑦 = −
1

𝑎

d2𝑦

d𝑥2
 

(4) 

In this limit,  𝒟𝑦 ∝ − d2𝑦 d𝑥2⁄  and the operator, 𝒟, approximately acts as a second derivative. 

Thus, the approximation is most accurate when the scale length, 𝑘0
−1, of features that are being 

determined is smaller than the scale length, 𝑠−1, over which the noise correlates. 

We now solve for 𝑐(𝑥). Combining Equations (1) and (2) and Fourier transforming position, 𝑥, 

to wavenumber, 𝑘, yields: 



(𝑠2 + 𝑘2)2  𝑐̃(𝑘) = 𝑎2   or    𝑐̃(𝑘) =
𝑎2

(𝑠2 + 𝑘2)2
 

(13.30) 

Taking the inverse Fourier transform yields: 

𝑐(𝑥) = 𝑎2 ∫ 𝑐̃(𝑘) exp(𝑖𝑘𝑥) d𝑘
∞

−∞

= 2𝑎2 ∫
cos(𝑘𝑥)

(𝑠2 + 𝑘2)2
d𝑘

∞

0

=
𝜋𝑎2

2𝑠3
(1 + 𝑠|𝑥|) exp(−𝑠|𝑥|) 

(13.31) 

Here, we have used integral 3.729.1 of Gradshteyn and Ryzhik (1980). Choosing 𝑎2 = 2𝑠3𝛾2/𝜋 

yields: 

𝑐(𝑥) = 𝛾2(1 + 𝑠|𝑥|) exp(−𝑠|𝑥|)     and     

𝒟 = (
𝜋

2𝑠3𝛾2
)

½

(𝑠2 −
d2

d𝑥2
) ≈ − (

𝜋

2𝑠3𝛾2
)

½ d2

d𝑥2
 

(13.32) 

The autocorrelation function, 𝑐(𝑥), has a shape similar to that of a Gaussian at small |𝑥|, but is 

much longer tailed (Figure 1).  
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Figure 1. Autocorrelation function, 𝑐(𝑥) (bold curve), as defined in Equation (13.32), with 

amplitude, 𝛾2 = 1 and scale parameter, 𝑠 = 0.1, compared to a Gaussian autocorrelation 

function (dotted curve) with the same amplitude and scale parameter.   
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