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I’ve always found Kalman Filtering rather mysterious.  However, it turns out that it is just a simple 

application of Generalized Least Squares (least squares with prior information). 

Kalman filtering combines two ideas: 

The first idea is that the state of a dynamic system is represented by a vector, 𝐦(𝑘), of initially unknown 

model parameters. The goal of Kalman filtering is to estimate the state. It is known to evolve with time, 

𝑘∆𝑡, according to the linear rule: 

𝐦(𝑘) = 𝐅(𝑘)𝐦(𝑘−1) + 𝐠(𝑘) 

(1) 

Here, 𝐅(𝑘)is a known dynamics matrix, 𝐠(𝑘) = 𝐁(𝑘)𝐮(𝑘) + 𝐰(𝑘) is a forcing with known 𝐁(𝑘) and 𝐮(𝑘) 

and 𝐰(𝑘) is a vector of Normally-distributed noise with zero mean and covariance [cov 𝐠(𝑘)].  By 

rewriting the dynamical equation as 

𝐦(𝑘) − 𝐦(𝑘−1)

∆𝑡
=

1

∆𝑡
[(𝐅(𝑘) − 𝐈)𝐦(𝑘−1) + 𝐠(𝑘)] 

(2) 

it is shown to be the finite difference approximation to a system of coupled first-order differential 

equations in 𝐦. Such systems can represent a wide variety of dynamics. 

The second idea is that the state, 𝐦(𝑘), is not directly observable. Instead, data are related to the state via 

the linear data equation: 

𝐝(𝑘) = 𝐆(𝑘)𝐦(𝑘) + 𝐧(𝑘) 

(3) 

Here, 𝐆(𝑘)is a known data kernel matrix, 𝐦(𝑘) are the unknown model parameters and 𝐧(𝑘) is a vector of 

Normally-distributed noise with zero mean and covariance [cov 𝐝(𝑘)].   

Suppose that prior information of the solution, 〈𝐦(1)〉, and its covariance, [cov 𝐦(1)]
𝐴

, is available for 

time 𝑘 = 1.  Kalman filtering estimates the state 𝐦(𝑘) for 𝑘>1 according to the following steps: 

(1) Set 𝑘 = 1 and take note of 〈𝐦(𝑘)〉 and [cov 𝐦(𝑘)]
𝐴

. 

(2) Solve the data equation  𝐝(𝑘) = 𝐆(𝑘)𝐦(𝑘) (covariance [cov 𝐝(𝑘)]) together with the prior information 

equation 𝐦(𝑘) = 〈𝐦(𝑘)〉 (covariance [cov 𝐦(𝑘)]
𝐴

) using Generalized Least Squares to achieve a best-

estimate, 𝐦(𝑘), of the state, together with its covariance, [cov 𝐦(𝑘)]: 

𝐦(k) = 〈𝐦(𝑘)〉 + 𝐆𝑘
−𝑔

∆𝐝(𝑘) 

 𝑤𝑖𝑡ℎ  𝐆𝑘
−𝑔

= [cov 𝐦(𝑘)]
𝐴

𝐆(𝑘)𝑇 [𝐆(𝑘)[cov 𝐦(𝑘)]
𝐴

𝐆(𝑘)𝑇 + [cov 𝐝(𝑘)]]
−1

 



and     ∆𝐝(𝑘) = 𝐝(𝑘) − 𝐆(𝑘)〈𝐦(𝑘)〉 

(4) 

[cov 𝐦(𝑘)] = (𝐈 − 𝐆𝒌
−𝑔

𝐆(𝑘))[cov 𝐦(𝑘)]
𝐴

 

(5) 

(3) Presume that the dynamical equation provides prior information about the value of stae, 〈𝐦(𝑘+1)〉, at 

the next time step. The covariance, [cov 𝐦(𝑘+1)]
𝐴

, is found using standard error propagation. 

〈𝐦(𝑘+1)〉 = 𝐅(𝑘+1)𝐦(𝑘) + 𝐠(𝑘+1) 

(6) 

[cov 𝐦(𝑘+1)]
𝐴

= 𝐅(𝑘+1)[cov 𝐦(𝑘)]𝐅(𝑘+1) + [cov 𝐠(𝑘+1)] 

(7) 

 

(4) Increment 𝑘 and repeat, starting with step 2. 

My analysis proceeded by matching expressions in Wikipedia’s Kalman Filtering article with the 

Generalized Least Squares (GLS) notation in Menke, Geophysical Data Analysis: Discrete Inverse 

Theory, Fourth Edition, 2018 (Table 1).  One further derivation, provided below, is need to match the 

formulas for [cov 𝐦(𝑘)]: 

We start by noting that 〈𝐦〉  has covariance,  [cov 𝐦]𝐴, 𝐝 has covariance, [cov 𝐝], and the Generalized 

Least Squares solution is: 

𝐦est = 〈𝐦〉 + 𝐆−𝑔(𝐝 − 𝐆〈𝐦〉) = 𝐆−𝑔𝐝𝑜𝑏𝑠 − (𝐈 − 𝐆−𝑔𝐆)〈𝐦〉 

with generalized inverse: 

𝐆−𝑔 = [cov 𝐦]𝐴𝐆T𝐀−1    with    𝐀 = [𝐆[cov 𝐦]𝐴𝐆𝑇 + [cov 𝐝]] 

and so that 𝐆−𝑔𝑇 = 𝐀−1𝐆[cov 𝐦]𝐴. Then, via standard error propagation: 

[cov 𝐦]𝑒𝑠𝑡 = 𝐆−𝑔[cov 𝐝]𝐴𝐆−𝑔𝑇 + (𝐈 − 𝐆−𝑔𝐆)[cov 𝐦]𝐴(𝐈 − 𝐆T𝐆−𝑔𝑇) 

= [cov 𝐦]𝐴 + 𝐆−𝑔[cov 𝐝]𝐴𝐆−𝑔𝑇 + 𝐆−𝑔𝐆[cov 𝐦]𝐴𝐆T𝐆−𝑔𝑇 

−[cov 𝐦]𝐴𝐆T𝐆−𝑔𝑇 − 𝐆−𝑔𝐆[cov 𝐦]𝐴 = 

= [cov 𝐦]𝐴 + 𝐆−𝑔 [𝐆[cov 𝐦]𝐴𝐆T + [cov 𝐝]] 𝐆−𝑔𝑇 

−[cov 𝐦]𝐴𝐆T𝐆−𝑔𝑇 − 𝐆−𝑔𝐆[cov 𝐦]𝐴 = 

= [cov 𝐦]𝐴 + [cov 𝐦]𝐴𝐆T𝐀−1𝐀𝐀−1𝐆[cov 𝐦]𝐴 

−[cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 − [cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 = 

= [cov 𝐦]𝐴 + [cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 



−[cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 − [cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 = 

= [cov 𝐦]𝐴 − [cov 𝐦]𝐴𝐆T𝐀−1𝐆[cov 𝐦]𝐴 = 

= [cov 𝐦]𝐴 − 𝐆−𝑔𝐆[cov 𝐦]𝐴 = [𝐈 − 𝐆−𝑔𝐆][cov 𝐦]𝐴 

(8) 

An important question is whether Kalman filtering produces different estimates of 𝐦(𝑘) and [cov 𝐦(𝑘)] 

then if one were to solve the time-coupled generalized least squares problem. 

In the problem, all the model parameters are concatenated into a single vector, 𝐦(𝑎𝑙𝑙) =

[𝐦(1); 𝐦(2);  𝐦(3); ⋯ ].  The data equation is 𝐝(𝑎𝑙𝑙) = 𝐆(𝑎𝑙𝑙)𝐦(𝑎𝑙𝑙), with covariance [cov 𝐝(𝑎𝑙𝑙)] =

diag([cov 𝐝(1)], [cov 𝐝(2)], ⋯ ), represents all the data.  The prior information equation represents all the 

prior information, and has the form 𝐡(𝑎𝑙𝑙) = 𝐇(𝑎𝑙𝑙)𝐦(𝑎𝑙𝑙). It includes initial conditions, boundary 

conditions, and the recursion equation,  𝐅(𝑘)𝐦(𝑘−1) − 𝐦(𝑘) = −𝐠(𝑘) as its rows.  The variances of these 

equations and 

[cov 𝐡(𝑎𝑙𝑙)] = diag([cov 𝑖𝑐], [cov bc], [cov 𝐠(1)], [cov 𝐠(2)], ⋯ ) 

(9) 

where [cov 𝑖𝑐] and [cov bc] are the covariances of the initial and boundary condition, respectively. 

Example. 

The diffusion equation, 

𝜕

𝜕𝑡
𝑚(𝑡, 𝑥) = 𝑐0

𝜕2

𝜕𝑥2
𝑚(𝑡, 𝑥) + 𝑔(𝑡, 𝑥) 

(10) 

corresponds to the recursion equation 

𝑚(𝑡𝑖+1, 𝑥𝑗) − 𝑚(𝑡𝑖, 𝑥𝑗)

∆𝑡
= 𝑐0 (𝑚(𝑡𝑖, 𝑥𝑗−1) − 2𝑚(𝑡𝑖 , 𝑥𝑗) + 𝑚(𝑡𝑖, 𝑥𝑗+1)) + 𝑔(𝑡𝑖, 𝑥𝑗) 

(11) 

which when rewritten as 

𝑚(𝑡𝑖+1, 𝑥𝑗) = 𝑚(𝑡𝑖 , 𝑥𝑗) + 𝑐0∆𝑡 (𝑚(𝑡𝑖, 𝑥𝑗−1) − 2𝑚(𝑡𝑖, 𝑥𝑗) + 𝑚(𝑡𝑖, 𝑥𝑗+1)) + ∆𝑡𝑔(𝑡𝑖 , 𝑥𝑗) 

(12) 

has the form of Equation (1).  We presume that there are 𝑀 model parameters, with uniform sampling ∆𝑥, 

and 𝑁 time steps, with uniform sampling ∆𝑡 We also introduce the initial condition 𝑚(𝑡1, 𝑥𝑗) = 0 and the 

boundary conditions 𝑚(𝑡, 𝑥1) =  𝑚(𝑡, 𝑥𝑀) = 0. 

 



We introduce a data equation, 𝐝(𝑘) = 𝐆(𝑘)𝐦(𝑘), corresponding to making 𝐾 measurements of 𝑚(𝑡𝑘 , 𝑥) at 

randomly chosen positions, 𝑥. Each row of the data kernel contains a single entry of unity, with all other 

entries being zero. 

The source, 𝑔(𝑡𝑖 , 𝑥𝑗), is taken to be impulsive in time and Gaussian in position: 

𝑔(𝑡𝑖, 𝑥𝑗) = ∆𝑡𝛿(𝑡𝑖 − 𝑡1) exp (−(𝑥𝑗 − ½𝑥𝑀)
2

/2𝜎𝑥
2) 

 The results are shown in Figure 1. 

 

Figure 1. (A) True model with 𝑀 = 31, ∆𝑡 = ∆𝑥 = 1, 𝜎𝑥 = 5, 𝑐0 = 0.4, 𝐾 = 10, 𝜎𝑑 = 0.01, 𝜎𝑔 = 0.01, 

〈𝐦(1)〉 = 0, [cov 𝐦(1)]
𝐴

= 𝜎ℎ
2𝐈 and 𝜎ℎ = 0.1. (B) Observed data. (C) Estimated model by Kalman 

filtering. (D) Estimated model by fully-coupled generalized Least Squares. (E) Time evolution of root 

mean squared (r.m.s) data prediction error for Kalman filtering. (F) Time evolution of the logarithm of 

maximum model variance for Kalman filtering. (G) Histogram of the ratio of r.m.s. model error for 

Kalman filtering and model error for fully-coupled Generalized Least Squares, for 200 realizations of the 

data. 

Fully-coupled Generalized Least Squares seems to slightly outperform Kalman filtering, by the criterion 

of model error.  However, there are so many tunable parameters that I am unsure whether the difference is 

fundamental. 

However, Kalman filtering cannot be exactly equivalent to the fully-coupled Generalized Least Squares. 

The reason is that the Gram matrix for Fully-coupled Generalized Least Squares, when formulated in 

terms of single-time-step submatrices, is tridiagonal, and it is known that a tridiagonal system cannot be 

solved by a process that, like Kalman filtering, is forward-in-time, only.  The standard algorithm for 

solving a tridiagonal system consists of two steps, the first forward-in-time, and the second backward-in-

time.  Consequently, future measurements affect past estimated values of the GLS solution, whereas in 

Kalman filtering, they do not. 

A question that I’ve not worked on (yet): Is Kalman Filtering really “filtering”; that is, can the formula for 

𝐦(𝑘) be manipulated into the form of an FIR filter, 𝑎(𝑡) ∗ 𝑚(𝑡) =.𝑏(𝑡) ∗ 𝑔(𝑡). If so, what are the filters 

𝑎(𝑡), 𝑏(𝑡), and 𝑎−1(𝑡) ∗ 𝑏(𝑡)? 

  



 

Table 1. Correspondence between the variables in Wikipedia’s Kalman Filtering article and the variables 

in Menke, Geophysical Data Analysis: Discrete Inverse Theory, 4th Edition, 2018. 

No. Wikipedia Generalized Least Squares Comment 

1 𝑘 𝑘 time 𝑘 

2 𝐱𝑘 𝐦(𝑘) state variables / model 

parameters 

3 𝐮𝑘 𝐮(𝑘)  

4 𝐁𝑘𝐮𝑘 𝐠(𝑘) = 𝐁(𝑘)𝐮(𝑘) forcing 

5 𝐐𝑘 [cov 𝐠(𝑘)] covariance of dynamics 

4 𝐱𝑘 = 𝐅𝑘𝐱𝑘−1 + 𝐁𝑘𝐮𝑘 〈𝐦(𝑘)〉 = 𝐅(𝑘)𝐦(𝑘−1) + 𝐠(𝑘) dynamics recursion rule 

6 𝐏𝑘|𝑘−1 = 𝐅𝑘𝐏𝑘−1|𝑘−1𝐅𝑘
𝑇

+ 𝐐𝑘 
[cov 𝐦(𝑘)]

𝐴
= 𝐅(𝑘)[cov 𝐦(𝑘−1)]

𝐴
𝐅(𝑘)

+ [cov 𝐠(𝑘)] 

prior covariance  

recursion rule 

7 𝐳𝑘 𝐝(𝑘) data 

8 𝐇𝑘 𝐆(𝑘) data kernel 

9 𝐳𝑘 = 𝐇𝑘𝐱𝑘 𝐝(𝑘) = 𝐆(𝑘)𝐦(𝑘) data equation 

10 𝐑𝑘 [cov 𝐝(𝑘)] covariance of the data 

11 𝐒𝑘 = 𝐇𝑘𝐏𝑘|𝑘−1𝐇𝑘
𝑇 + 𝐑𝑘 𝐀(𝑘) = 

𝐆(𝑘)[cov 𝐦(𝑘)]
𝐴

𝐆(𝑘)𝑇 + [cov 𝐝(𝑘)] 

 

12 𝐊𝑘 = 𝐏𝑘|𝑘−1𝐇𝑘
𝑇𝐒𝑘

−1 𝐆𝑘
−𝑔

= [cov 𝐦(𝑘)]
𝐴

𝐆(𝑘)𝑇[𝐀(𝑘)]
−1

 generalized inverse 

13 𝐱̂𝑘|𝑘−1 〈𝐦(𝑘)〉 prior model parameters 

14 𝐲̃𝑘 = 𝐳𝑘 − 𝐇𝑘𝐱̂𝑘|𝑘−1 ∆𝐝(𝑘) = 𝐝(𝑘) − 𝐆(𝑘)〈𝐦(𝑘)〉 data deviation 

15 𝐱̂𝑘|𝑘 = 𝐱̂𝑘|𝑘−1 + 𝐊𝑘𝐲̃𝑘 𝐦(k) = 〈𝐦(𝑘)〉 + 𝐆𝒌
−𝑔

∆𝐝(𝑘) GLS solution 

16 𝐲̃𝑘|𝑘 = 𝐳𝑘 − 𝐇𝑘𝐱̂𝑘|𝑘 𝐞(𝑘) = 𝐝(𝑘) − 𝐆(𝑘)𝐦(k) prediction error 

17  [cov 𝐦(𝑘)] = 

(𝐈 − 𝐆𝒌
−𝑔

𝐆(𝑘))[cov 𝐦(𝑘)]
𝐴

 

 

posterior covariance of 

model parameters 

(see proof, below) 

18 𝐱̂𝑘+1|𝑘 = 𝐱̂𝑘|𝑘−1 〈𝐦(k+1)〉 = 𝐦(k) model recursion rule 

19 𝐏𝑘|𝑘

= (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘|𝑘−1 

[cov 𝐦(𝑘+1)]
𝐴

= [cov 𝐦(𝑘)] 

 

covariance recursion rule 

 


