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Abstract 

Kalman filtering (KF) is a popular form of data assimilation, especially in real-time applications. It 

combines observations with an equation that describes dynamic evolution to produce an estimate of the 

present time state of a system.  Although KF does not use future information in producing an estimate of 

the state vector, later reanalysis of the archival data set can produce an improved estimate, in which all 

data, past, present and future, contribute.  We examine the case in which the reanalysis is performed using 

generalized least squares (GLS), and establish the relationship between the real-time Kalman estimate and 

the GLS reanalysis.  We show that the KF solution at a given time is equal to the GLS solution that one 

would obtain if data excluded future times.  Furthermore, we show that the recursive procedure in KF is 

exactly equivalent to the solution of the GLS problem via Thomas’ algorithm for solving the block-

tridiagonal matrix that arises in the reanalysis problem. This connection suggests that GLS reanalysis is 

better considered the final step of a single process, rather than a “different method” arbitrarily being 

applied, post factor.  The connection also allows the concept of resolution, so important in other areas of 

inverse theory, to be applied to KF formulations. 

Introduction 

In this paper, we compare two data assimilation methods that are routinely applied to monitor time-

dependent of linear systems, one based on Generalized Least Squares (GLS) and the other on Kalman 

Filtering (KF).  The purpose of the analysis is to enumerate the similarities and differences between the 

methods, and to provide pathways for applying GLS concepts, and especially resolution analysis, to KF. 

At any time, 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝐾, a linear system is described by a state vector (model parameter vector), 𝐦(𝑖), 

say of length, 𝑀.  This state vector evolves away from the initial condition 

𝐦(1) = 𝐦𝐴
(1)

 

(1) 

according to the dynamical equation: 

𝐦(𝑖) = 𝐃𝐦(𝑖−1) + 𝐬(𝑖−1) 

(2) 

Here, 𝐃 is the dynamics matrix and 𝐬 is the source vector.  Neither the initial conditions nor the source is 

known exactly, but rather have uncertainty described by their respective covariance matrices, 𝐂𝐴 and 𝐂𝑠. 

This formulation well-approximates the behavior of systems described by linear partial differential 

equations that are first order in time. For example, let 𝑚𝑛
(𝑖) = 𝑚(𝑥𝑛, 𝑡𝑖) be temperature at time, 𝑡𝑖 = 𝑖∆𝑡, 

and position, 𝑥𝑛 = 𝑛∆𝑥, where ∆𝑡 and ∆𝑥 are small increments, and suppose that 𝑚(𝑥, 𝑡) satisfies the 

thermal diffusion equation, 𝜕𝑚 𝜕𝑡⁄ = 𝑐 𝜕2𝑚 𝜕𝑥2⁄ + 𝑞 (with zero boundary conditions).  This partial 

differential equation can be approximated by: 



𝐦(𝑖) − 𝐦(𝑖−1)

∆𝑡
=

𝑐

(∆𝑥)2
𝜟2𝐦

(𝑖−1) + 𝐪(𝑖−1)    or     𝐦(𝑖) = 𝐃𝐦(𝑖−1) + 𝐬(𝑖−1) 

𝐃 = (
𝑐∆𝑡

(∆𝑥)2
𝚫2 + 𝐈)𝐦(𝑖−1)    and    𝐬(𝑖−1) = ∆𝑡𝐪(𝑖−1) 

(3) 

which has the form of the dynamical equation.  Here, the choices: 

𝚫2 =

[
 
 
 
 
 
1      
1 −2 1    
 1 −2 1   
    ⋯  
   1 −2 1
     1]

 
 
 
 
 

  and  𝐪(𝑖−1) =

[
 
 
 
 

0

𝑞2
(𝑖−1)

⋮

𝑞𝑀−1
(𝑖−1)

0 ]
 
 
 
 

 

(4) 

encode both the differential equation and the boundary conditions.  The matrix, 𝐃, is sparse in this 

example, as well as in many other cases in which it approximates a differential operator. 

The data equation expresses the relationship between the state vector and the observables: 

𝐆(𝑖)𝐦(𝑖) = 𝐝(𝑖)    with covariance  𝐂𝑑 

(5) 

In the simplest case, the observations may be of selected elements of the state vector, itself, in which case, 

each row of 𝐆 is zero, except for a single element, say in column, 𝑘, that is unity. Here, 𝑘(𝑖, 𝑛) is a 

function that associates 𝑑𝑛
(𝑖)

 with 𝑚𝑘
(𝑖)

.  Other more complicated relationships are possible. For instance, 

in tomography, the data is a line integral through 𝑚(𝑥, 𝑦, 𝑡) (with 𝑦 another spatial dimension). The data 

kernel, 𝐆, is sparse in these two cases.  In other cases, it may not be sparse. 

The data assimilation problem is to estimate the state vector, 𝐦(𝑖), 1 < 𝑖 ≤ 𝐾, using the dynamical 

equation supplemented with the data equation, together with the initial condition. One possible approach 

is based on Generalized Least Squares (GLS); another upon Kalman Filtering (KF).  In this paper we 

explore the differences between the two and discuss the pros and cons of each. 

In order to simplify notation, we concatenate the state vectors for times into an overall vector, 𝐦 =

(𝐦(𝑖), ⋯ ,𝐦(𝐾)), and data vectors into an overall vector, 𝐝 = (𝐝(2),⋯ , 𝐝(𝑁)). By assumption, no 

observations are made at time, 𝑖 = 1. 

Generalized Least Squares Applied to the Data Assimilation Problem 

Generalized Least Squares (GLS) is a technique used to estimate 𝐦 when two types of information are 

available: prior information and data.  By prior information, we mean expectations about the properties of 

the behavior of 𝐦, that are based on past experience or general physical considerations. The dynamical 

equation and initial condition discussed in the previous section are examples of prior information. By data 

we mean direct observations, as typified by the data equation discussed in the previous section. 

Prior information can be represented by the linear equation, 𝐇𝐦 = 𝐡 (with covariance 𝐂ℎ) and 

observations can be represented by the linear equation, 𝐆𝐦 = 𝐝 (with covariance 𝐂𝑜). The Bayesian 



principle leads to the optimal solution, which we denote the Generalize Least Squares (GLS) solution, 

𝐦𝐺. It minimizes a combination of the weighted 𝐿2 error in prior information and the weighted 𝐿2 error 

in the data (where the weighting depends upon the covariances). 

Several equivalent forms of the GLS solution, 𝐦𝐺, and its posterior variance, 𝐂𝑚, are common in the 

literature.  We enumerate a few of the more commonly-used forms here: 

Form 1 groups the prior information and data equations into a single equation, 𝐅𝐦 = 𝐡: 

𝐦𝐺 = [𝐅𝑇𝐅]−1𝐅𝑇𝐟    with    𝐅 ≡ [
𝐂ℎ

−½𝐇

𝐂𝑜
−½𝐆

]      and     𝐟 ≡ [
𝐂ℎ

−½𝐡

𝐂𝑜
−½𝐝

] 

𝐂𝑚 = [𝐅𝑇𝐅]−1 

(6) 

Form 2 introduces generalized inverses, 𝐆−𝑔 and 𝐇−𝑔: 

𝐦𝐺 = 𝐆−𝑔𝐝 + 𝐇−𝑔𝐡 

with    𝐆−𝑔 ≡ 𝐀−1𝐆𝑇𝐂𝑜
−1   and  𝐇−𝑔 ≡ 𝐀−1𝐇𝑇𝐂ℎ

−1    and     𝐀 ≡ [𝐆𝑇𝐂𝑜
−1𝐆 + 𝐇𝑇𝐂ℎ

−1𝐇] 

𝐂𝑚 = 𝐀−1 

(7) 

Form 3 organizes the solution in terms of the prior state vector,  𝐦𝐴; that is, the state vector implied by 

the prior information, acting alone: 

𝐦𝐺 = 𝐆−𝑔𝐝 + 𝐏𝐺𝐦𝐴  with   𝐏𝐺 ≡ (𝐈 − 𝐆−𝑔𝐆) 

and with 𝐦𝐴 ≡ {
𝐇−1𝐡 ∃𝐇−1

[𝐇T𝐂ℎ
−1𝐇]

−1
 𝐇T𝐂ℎ

−1𝐡 ∄𝐇−1     and    𝐂𝐴 = [𝐇T𝐂ℎ
−1𝐇]

−1
 

𝐂𝑚 = 𝐏𝐺𝐂𝐴 

(8) 

The matrix, 𝐏𝐺, plays the role of a projection matrix.  See Appendix A.1 for a deviation of the covariance 

equation. 

Form 4 introduces the deviation, ∆𝐦, of the solution from the prior state vector, and the corresponding 

deviation, ∆𝐝, of the data from that predicted by the prior state vector: 

∆𝐦 = 𝐆−𝑔∆𝐝      and    ∆𝐦 ≡ 𝐦𝐺 − 𝐦𝐴    and      ∆𝐝 ≡ 𝐝 − 𝐆𝐦𝐴 

(9) 

Finally, Form 5: uses as alternate form of the generalized inverse: 

∆𝐦 = 𝐆′−𝑔∆𝐝      with    𝐆′−𝑔 ≡ 𝐂𝐴𝐆𝑇 𝐀′−1
    and    𝐀′ ≡ [𝐂𝑜 + 𝐆𝐂𝐴𝐆T] 

(10) 

Tarantola and Valette (1982) prove the equality of the two forms using a matrix identity that we denote 

TV82-A (see Appendix A.2). Because 𝐀 is 𝑀 × 𝑀 and 𝐀′ is 𝑁 × 𝑁, the first form is most useful when 



𝑀 < 𝑁; the second when 𝑀 > 𝑁. However, a decision to use one or the other must also take in 

consideration the sparsity of the various matrix products. 

Form 4 is derived from Form 3 by subtracting 𝐀𝐦𝐴 from both sides of the Gram equation,  

𝐀(𝐦𝐺 − 𝐦𝐴) = 𝐚 − 𝐀𝐦𝐴 

[𝐆𝑇𝐂𝑜
−1𝐆 + 𝐇𝑇𝐂ℎ

−1𝐇](𝐦𝐺 − 𝐦𝐴) = 𝐆𝑇𝐂𝑜
−1(𝐝 − 𝐆𝐦𝐴) + 𝐇𝑇𝐂ℎ

−1(𝐡 − 𝐇𝐦𝐴) 

(11) 

and then by requiring that the second term on the right-hand side vanish, which leads to: 

𝐀∆𝐦 = 𝐆𝑇𝐂𝑜
−1∆𝐝    with   ∆𝐝 = 𝐝 − 𝐆𝐦𝐴  and   𝐦𝐴 = [𝐇𝑇𝐂ℎ

−1𝐇]
−1

𝐇𝑇𝐂ℎ
−1𝐡 

(12) 

That is, 𝐦𝐴 is due to the prior information acting along.  The deviatoric manipulation is completely 

general; alternately the first term could have been made to vanish, in which leads to: 

 

𝐀∆𝐦 = 𝐇𝑇𝐂ℎ
−1∆𝐡    with   ∆𝐡 = 𝐡 − 𝐇𝐦𝐺   and   𝐦𝐺 = [𝐆𝑇𝐂𝑜

−1𝐆]−1𝐆𝑇𝐂𝑜
−1𝐝 

(13) 

Here, 𝐦𝐺 is due to the data acting alone.   Note that deviatoric manipulations of this type never change 

the form of the matrix, 𝐀.We will apply this principle later in the paper. 

In the subsequent analysis, we will focus on the Gram equations: 

𝐀 ∆𝐦 = 𝐆𝑇𝐂𝑜
−1∆𝐝 ≡ 𝐚 

(14) 

The initial condition and the dynamical equation can be into a single prior information equation of the 

form, 𝐇𝐦 = 𝐡: 

[
 
 
 
 

𝐈      
−𝐃 𝐈     
 −𝐃  𝐈    
   ⋱   
    −𝐃 𝐈  ]

 
 
 
 

[
 
 
 
 
𝐦(1)

𝐦(2)

𝐦(3)

⋮
𝐦(𝐾)]

 
 
 
 

=

[
 
 
 
 
 𝐦𝐴

(1)

𝐬(1)

𝐬(2)

⋮
𝐬(𝐾−1)]

 
 
 
 
 

  with covariance 𝐂ℎ 

(15) 

Here, 𝐂ℎ ≡ diag(𝐂𝐴, 𝐂𝑠, 𝐂𝑠, ⋯ 𝐂𝑠).  Several quantities derived from 𝐇, and which we will use later, 

are: 

𝐇𝑇 =

[
 
 
 
 
 
𝐈 −𝐃𝑇     
 𝐈 −𝐃𝑇   
   𝐈 −𝐃𝑇  
     ⋱  
    𝐈 −𝐃𝑇 
     𝐈 ]

 
 
 
 
 

    and   𝐇−1 =

[
 
 
 
 

𝐈      
𝐃 𝐈      
 𝐃2  𝐃  𝐈   
 𝐃3  𝐃2   𝐃  𝐈  

     ⋱ ]
 
 
 
 

 



𝐇𝑇𝐂ℎ
−1𝐇 =

[
 
 
 
 
 
[𝐂𝐴

−1 + 𝐃𝑇𝐂𝑠
−1𝐃] −𝐃𝑇𝐂𝑠

−1 𝟎   

−𝐂𝑠
−1𝐃 [𝐂𝑠

−1 + 𝐃𝑇𝐂𝑠
−1𝐃] −𝐃𝑇𝐂𝑠

−1     

  −𝐂𝑠
−1𝐃 [𝐂𝑠

−1 + 𝐃𝑇𝐂𝑠
−1𝐃]   

     ⋱ −𝐃𝑇𝐂𝑠
−1 

   −𝐃𝑇𝐂𝑠
−1 𝐂𝑠

−1 ]
 
 
 
 
 

 

𝐇𝑇𝐂ℎ
−1𝐡 =   

[
 
 
 
 
 
 𝐂𝐴

−1𝐦𝐴
(1)

− 𝐃𝑇𝐂𝑠
−1𝐬(1)

𝐂𝑠
−1𝐬(1) − 𝐃𝑇𝐂𝑠

−1𝐬(2)

𝐂𝑠
−1𝐬(2) − 𝐃𝑇𝐂𝑠

−1𝐬(3)

⋮
𝐂𝑠

−1𝐬(𝑁−1) − 𝐃𝑇𝐂𝑠
−1𝐬(𝑁)

𝐂𝑠
−1𝐬(𝑁) ]

 
 
 
 
 
 

 

(16) 

The data equation expresses the relationship between the state vector and the observables, and assuming 

that no data are available for time, 𝑖 = 1, as the form: 

[

𝟎  𝐆(2)    
  𝐆(3)   
   ⋱  
    𝐆(𝑁) 

]

[
 
 
 
 
𝐦(1)

𝐦(2)

𝐦(3)

⋮
𝐦(𝑀)]

 
 
 
 

  = [

𝐝(2)

𝐝(3)

⋮
𝐝(𝑁)

]  with covariance 𝐂𝑜  

(17) 

Here, 𝐂𝑜 ≡ diag(𝐂𝑑 , 𝐂𝑑 , 𝐂𝑑 , ⋯ 𝐂𝑑) is a summary covariance matrix. We note that: 

𝐆𝑇𝐂𝑑
−1𝐆 = [

𝟎      
 𝐆(2)𝑇𝐂𝑑

−1𝐆(2)𝑇    
   ⋱  
    𝐆(K)𝑇𝐂𝑑

−1𝐆(K)𝑇 

]     and   𝐆𝑇𝐂𝑑
−1𝐝 =

[
 
 
 
 

𝟎
𝐆(2)𝑇𝐂𝑑

−1𝐝(2)

𝐆(3)𝑇𝐂𝑑
−1𝐝(3)

⋮
𝐆(𝐾)𝑇𝐂𝑑

−1𝐝(𝑁)]
 
 
 
 

  

(18) 

The matrix,  𝐀, in the first form of the Gram equation is block-triagonal and symmetric: 

[
 
 
 
 
𝐀1  𝐁𝑇     

𝐁 𝐀2   𝐁𝑇   
     
    ⋱  𝐁𝑇 
    𝐁 𝐀𝑁 ]

 
 
 
 

[
 
 
 
 
𝐦(1)

𝐦(2)

𝐦(3)

⋮
𝐦(𝐾)]

 
 
 
 

 =

[
 
 
 
 
𝐚1

𝐚2

𝐚3

⋮
𝐚𝐾]

 
 
 
 

 

(19) 

with elements: 

𝐀𝑖 = {

[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1] (𝑖 = 1)

[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝑠

−1 + 𝐆(𝑖)𝐂𝑑
−1𝐆(𝑖)𝑇] (1 < 𝑖 < 𝐾) 

𝐂𝑠
−1 + 𝐆(𝐾)𝐂𝑑

−1𝐆(𝐾)𝑇 (𝑖 = 𝐾)

 



𝐁 = −𝐂𝑠
−1𝐃 

(20) 

The vector, 𝐚, on the right-hand side of the Gram equation, is: 

𝐚𝑖 = {
[−𝐃𝑇𝐂𝑠

−1𝐬(1) + 𝐂𝐴
−1𝐦𝐴

(1)
] (𝑖 = 1)

[−𝐃𝑇𝐂𝑠
−1𝐬(𝑖) + 𝐂𝑠

−1𝐬(𝑖−1) + 𝐆(𝑖)𝑇𝐂𝑑
−1𝐝(𝑖)] (𝑖 > 1) 

 

(21) 

Here, we define 𝐬(𝑁) to be zero. 

Recursive Solution Using the Thomas method 

Insight into the behavior of the solution can be gained by applying the Thomas (1949) method (see 

Appendix A.3).  It consists of a forward-in-time pass through the system that recursively calculates two 

quantities, �̂�𝑖 and �̂�𝑖: 

�̂�𝑖
−1 ≡ {

𝐀1
−1 (𝑖 = 1)

[𝐀𝑖 − 𝐁�̂�𝑖−1
−1 𝐁𝑇]

−1
(𝑖 > 1)

 

�̂�𝑖 ≡ {
𝐚1 (𝑖 = 1)

[𝐚𝑖 − 𝐁�̂�𝑖−1
−1 �̂�𝑖−1] (𝑖 > 1)

 

(22) 

After the forward recursion, the system is block-bidiagonal with row 𝑖 having elements �̂�𝑖 and 𝐁𝑇 (except 

for the last row, which lacks the 𝐁𝑇) and the modified right-hand side is �̂�𝑖.  The solution, 𝐦𝐺
(𝑖)

, is 

achieved through a backward recursion: 

𝐦𝐺
(𝑖) = {

�̂�𝐾
−1�̂�𝐾 (𝑖 = 𝐾)

�̂�𝑖
−1[�̂�𝑖 − 𝐁𝑇𝐦(𝑖+1)] (𝑖 < 𝐾)

 

(23) 

It is evident that information is propagated both forward and backward in time during the solution 

process. Furthermore, computation time grows no faster than the number of steps, 𝐾, in the recursion. 

The Thomas method has a disadvantage in the common case where the covariances matrices, 𝐂𝐴, 𝐂𝑠 and 

𝐂𝑑 are diagonal and when 𝐃 and 𝐆(𝑖) are sparse, because although 𝐅 is then also sparse, the matrices, 

�̂�𝑖
−1, are in general not sparse, so the effort needed to compute them scales with 𝑀3. Other direct methods 

share this limitation, too. Consequently, the overall calculation scales with 𝐾𝑀3.  The conjugate gradient 

method, applied to the Gram equation, 𝐅𝑇𝐅𝐦 = 𝐅𝑇𝐡, is usually a better choice.   This method requires 

that the quantity, 𝐮 = (𝐅𝑇𝐅)𝐯, be calculated for an arbitrary vector, 𝐯, and this quantity can be very 

efficiently calculated as 𝐮 = 𝐅𝑇(𝐅𝐯).  In cases in which the dynamical equation approximates a partial 

differential equation, the number of non-zero elements in the matrix, 𝐅, scale with 𝐾𝑀.  The conjugate 

gradient algorithm requires no more than 𝐾𝑀 iterations (and often much fewer), each requiring 𝐾𝑀 

multiplications. Thus, the overall solution time scales with 𝐾2𝑀2. Consequently, the conjugate gradient 

method has a speed advantage when 𝑀 > 𝐾. 



Present Time Solution 

Suppose that the analysis focuses on the “present time”, 𝑖, in the sense that only the solution, 𝐦𝑃
(𝑖)

. 

determined using data up to and including time, 𝑖, is of interest. One can assemble a sequence of present-

time solutions during the forward recursion, using the fact that the 𝑖th solution can always be considered 

to be the final one, and no backwards recursion is needed to compute the solution for the final time. 

However, the forms of the “final” �̂�𝑖 and �̂�𝑖 differ from that of the previous 𝐀s in the recursion, so a 

separate computation is needed: 

𝐦𝑃
(𝑖) = �̂�′𝑖

−1 �̂�′𝑖  

�̂�′𝑖 = �̂�𝑖 − 𝐃𝑇𝐂𝑠
−1𝐃 = 𝐂𝑠𝑖

−1 + 𝐆(𝑖)𝐂𝑑
−1𝐆(𝑖)𝑇    and    �̂�′𝑖 = �̂�𝑖 + 𝐃𝑇𝐂𝑠

−1𝐬(𝑖) 

(24) 

Consequently, in order to create a sequence of present-time solution, the two matrix inverses – not one – 

must be calculated at each step in the forward recursion.  The present-time solution is the same as the 

reference solution, 𝐦𝐷
(𝑖)

, defined in the previous section. 

Kalman Filtering 

Kalman Filtering (KF) is a solution method with an algorithm that, like the Thomas present-time solution, 

is forward-in-time, only.  It consists of four steps, the final three of which are iterated. 

Step 1 assigns the 𝑖 = 1 solution, 𝐦𝐾
(1)

, its covariance, 𝐂𝑚
(1)

, at the 1st time step.: 

𝐦𝐾
(1)

= 𝐦𝐴
(1)

   and  𝐂𝑚
(1)

 = 𝐂𝐴 

(25) 

Step 2 propagates the solution and its covariance forward in time using the dynamical equation, and 

considers it to be prior information. 

𝐦𝐴
(𝑖) = (𝐃𝐦𝐾

(𝑖−1)
+ 𝐬(𝑖−1))    and  𝐂𝐴

(𝑖)
= 𝐃𝐂𝑚

(𝑖−1)
𝐃𝑇 + 𝐂𝑠 

(26) 

Step 3 uses GLS to combine the prior information, 𝐦𝐴
(𝑖), with covariance 𝐂𝐴

(𝑖)
, and data, 𝐝(𝑖), with 

covariance 𝐂𝑑, into a solution, 𝐦𝐾
(𝑖)

, with covariance, 𝐂𝑚.  Any of the (equivalent) GLS solutions 

described above can be used in this step. 

Step 4, increments 𝑖 and returns to Step 2, creating a recursion. 

Most often, the GLS solution and its variance are written as: 

𝐦𝐾
(𝑖) = 𝐦𝐴

(𝑖) + 𝐆𝑖
−𝑔

∆𝐝(𝑖)    with   ∆𝐝(𝑖) = 𝐝(𝑖) − 𝐆(𝑖)𝐦𝐴
(𝑖)

 

with    𝐆𝑖
−𝑔

= 𝐂𝐴
(𝑖)𝐆(𝑖)𝑇 [𝐂𝑑

(𝑖) + 𝐆(𝑖)𝐂𝐴
(𝑖)𝐆(𝑖)𝑇]

−1
    and    𝐂𝐴

(𝑖)
= 𝐃𝐂𝑚

(𝑖−1)
𝐃𝑇 + 𝐂𝑠 

and    𝐂𝑚
(𝑖) = [𝐈 − 𝐆𝑖

−𝑔
𝐆(𝑖)]𝐂𝐴

(𝑖) = 𝐏𝐺
(𝑖)𝐂𝐴

(𝑖)    and   𝐏𝐺
(𝑖) ≡ [𝐈 − 𝐆𝑖

−𝑔
𝐆(𝑖)] 



(27) 

However, any of the equivalent forms described above can substitute, such as: 

𝐦𝐾
(𝑖) = �̃�𝑖

−1�̃�𝑖 

𝐂𝐴
(𝑖)

= 𝐃𝐂𝑚
(𝑖−1)

𝐃𝑇 + 𝐂𝑠    and    �̃�𝑖
−1 = [𝐆(𝑖)𝑇𝐂𝑑

−1𝐆(𝑖) + [𝐂𝐴
(𝑖)

]
−1

]
−1

= 𝐂𝑚
(𝑖)

 

�̃�𝑖 = 𝐆(𝑖)𝑇𝐂𝑑
−1𝐝 + [𝐂𝐴

(𝑖)
]
−1

𝐃𝐦𝐾
(𝑖−1)

+ [𝐂𝐴
(𝑖)

]
−1

𝐬(𝑖−1) 

(28) 

Is Kalman Filtering “filtering”? 

A standard Infinite Impulse Response (IIR) filter has the form 𝐯 ∗ 𝐦 = 𝐮 ∗ 𝐳, where 𝐳 is the unput 

timeseries, 𝐦 is the “output” timeseries, 𝐮 and 𝐯 are filters (with 𝑣1 = 1) and ∗ signifies convolution. Key 

to this formulation is that the filter coefficients are constants; that is, they are not a function of time. 

If the generalized inverse in KF was time-independent, so that 𝐆𝑖
−𝑔

= 𝐆−𝑔, then KF could be put into 

form of an IIR filter: 

[
[𝐈]

[𝐆−𝑔𝐆𝐃 − 𝐈]
] ∗ [

⋮
𝐦(𝑖−1)

𝐦(𝑖)

⋮

] = [𝐆−𝑔 −𝐆−𝑔𝐆] ∗

[
 
 
 
 
 

⋮

[𝐝
(𝑖−1)

𝐬(𝑖−2)]

[ 𝐝(𝑖)

𝐬(𝑖−1)
]

⋮ ]
 
 
 
 
 

 

(29) 

because the convolution reproduces the KF solution: 

𝐦(𝑖) = 𝐦(𝑖−1) + 𝐆−𝑔 (𝐝(𝑖) − 𝐆(𝐃𝐦(𝑖−1) + 𝐬(𝑖−1))) 

(30) 

So, from this point of view, the KF has a 𝐯 of length 2 (each element of which is a matrix), and a 𝐮 of 

length 1 (each element of which is a row vector of two matrices). However, this formulation does not 

really correspond to a standard IIR filter, because the filter coefficients, which depend upon the 

generalized inverse, 𝐆𝑖
−𝑔

, depend upon time, 𝑖.  Hence, the word “filter”, though generally indicative of 

the process, oversimplifies the actual operation being performed. It is not filtering in the strict sense. 

The Present-Time Thomas and Kalman Filtering Solutions are Equal 

We will now demonstrate that the present-time Thomas solution, 𝐦𝑃
(𝑖)

, and the Kalman filtering solution, 

𝐦𝐾
(𝑖)

, are equal.  We will make use of an identity, abbreviated TV82-B, that is due to Tarantola and 

Valette (1982), which shows that for invertible symmetric matrices 𝐂1 and 𝐂2 and arbitrary matrix, 𝐌: 

𝐂2 − 𝐂2𝐌
𝑇[𝐌𝐂2𝐌

𝑇 + 𝐂1]
−1𝐌𝐂2 = [𝐌𝑇𝐂1

−1𝐌 + 𝐂2
−1]−1 

(31) 



Thus, for instance, when 𝐂1
−1 = 𝐂𝐴

(𝑖)
, 𝐂2

−1 = 𝐂𝑠 and 𝐌 = 𝐃𝑇: 

[𝐂𝐴
(𝑖)

]
−1

= [𝐃𝐂𝑚
(𝑖−1)

𝐃𝑇 + 𝐂𝑠]
−1

= 𝐂𝑠
−1 − 𝐂𝑠

−1𝐃[𝐃𝑇𝐂𝑠
−1𝐃 + [𝐂𝑚

(𝑖−1)
]
−1

]
−1

𝐃𝑇𝐂𝑠
−1 

(32) 

The PT and KF recursions both start with 𝐦𝐾
(1)

= 𝐦𝑃𝑇
(1)

= 𝐦𝐴 and 𝐂𝐾𝐴
(1)

= 𝐂𝑃𝑇𝐴
(1)

= 𝐂𝐴.  The (𝑖 = 2) case 

in irregular, and must be examine separately. The KF solution is: 

𝐦𝐾
(2)

= �̃�2
−1�̃�2 

with    �̃�2 = 𝐆(2)𝑇𝐂𝑑
−1𝐆(2) + [𝐂𝐴

(2)
]
−1

 with   𝐂𝐴
(2)

= 𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠 

and    �̃�2 = 𝐆(2)𝑇𝐂𝑑
−1𝐝(2) + [𝐂𝐴

(2)
]
−1

𝐃𝐦𝐾
(1)

+ [𝐂𝐴
(2)

]
−1

𝐬(1) 

(33) 

This can be compared with the present-time Thomas solution: 

𝐦𝑃
(2)

= �̂�′2
−1�̂�′2 

with   𝐀′̂2 = 𝐆(2)𝐂𝑑
−1𝐆(2)𝑇 + 𝐂𝑠

−1 − 𝐂𝑠
−1𝐃[𝐃𝑇𝐂𝑠

−1𝐃 + 𝐂𝐴
−1]−1𝐃𝑇𝐂𝑠

−1 

= 𝐆(2)𝐂𝑑
−1𝐆(2)𝑇 + [𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]

−1 

�̂�′2 = 𝐆(2)𝑇𝐂𝑑
−1𝐝(2) + 𝐂𝑠

−1𝐬(1) − 𝐂𝑠
−1𝐃�̂�1

−1𝐃𝑇𝐂𝑠
−1𝐬(1) + 𝐂𝑠

−1𝐃�̂�1
−1𝐂𝑠

−1𝐃𝐂𝐴
−1𝐦𝐴 

(34) 

Note that we used TV82-B to simplify the expression for �̂�2.  By inspection, �̂�′2 = �̃�2.  Thus, the two 

solutions are equal if �̂�′2 = �̃�2.  The terms involving 𝐝(2) match.  The terms involving 𝐬(1) would match 

if it could be shown that: 

𝐂𝑠
−1 − 𝐂𝑠

−1𝐃[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1]−𝟏𝐃𝑇𝐂𝑠
−1  ≟ [𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]

−1 

(35) 

But this equation is true by TV82-B.  The terms 𝐦𝐴 also match, because of the matrix identity 

[𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]
−1𝐃 = 𝐂𝑠

−1𝐃[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1]−1𝐃𝐂𝐴
−1 

(36) 

proved in Appendix A.4. Consequently, the solutions, 𝐦𝐾
(2)

= 𝐦𝑃
(2)

, and their posterior covariances, 

𝐂𝐾𝑚
(2)

= 𝐀′̂2
−1 = 𝐂𝑃𝑚

(2)
= �̃�2

−1 are equal.  Applying 𝐂𝐾𝑚
(𝑖) = �̃�𝑖

−1 to the Karman recursion, and TV82-B and 

�̂�𝑖 = �̂�′𝑖 + 𝐃𝑇𝐂𝑠
−1𝐃𝑇 to present-time Thomas recursion, leads to: 

�̃�𝑖+1 = 𝐆(𝑖+1)𝑇𝐂𝑑
−1𝐆(𝑖+1) + [𝐃�̃�𝑖

−1𝐃𝑇 + 𝐂𝑠]
−1

 

�̂�′𝑖+1 = 𝐆(𝑖+1)𝐂𝑑
−1𝐆(𝑖+1)𝑇 + 𝐂𝑠

−1 − 𝐂𝑠
−1𝐃[𝐃𝑇𝐂𝑠

−1𝐃 + �̂�′𝑖]
−1

𝐃𝑇𝐂𝑠
−1 



= 𝐆(𝑖+1)𝐂𝑑
−1𝐆(𝑖+1)𝑇 + [𝐃�̂�′𝒊

−1𝐃𝑇 + 𝐂𝑠]
−1

 

(37) 

Thus, �̃�𝑖+1 = �̂�′𝑖+1 as long as �̃�𝑖
−1 = �̂�′𝒊

−1.  Because the latter is true for 𝑖 = 2, so the formula can be 

successively applied to show �̃�𝑖+1 = �̂�′𝑖+1 for all 𝑖 > 2.  Similarly, the procedure that demonstrated the 

equality of �̂�2 and �̃�2 can be extended to  

�̃�𝑖+1 = 𝐆(𝑖+1)𝑇𝐂𝑑
−1𝐝(𝑖+1) + [𝐃�̃�𝑖

−1 𝐃𝑇 + 𝐂𝑠]
−1

𝐬(𝑖) + [𝐃�̃�𝑖
−1 𝐃𝑇 + 𝐂𝑠]

−1
𝐃𝐦𝐾

(𝑖)
 

and 

�̂�𝑖+1 = 𝐂𝑠
−1𝐬(𝑖) + 𝐆(𝑖+1)𝑇𝐂𝑑

−1𝐝(𝑖+1) + 𝐂𝑠
−1𝐃�̂�𝑖

−1[�̂�′𝑖 − 𝐃𝑇𝐂𝑠
−1𝐬(𝑖)] 

= 𝐆(𝑖+1)𝑇𝐂𝑑
−1𝐝(𝑖+1) + [𝐂𝑠

−1 − 𝐂𝑠
−1𝐃�̂�𝑖

−1𝐃𝑇𝐂𝑠
−1]𝐬(𝑖) + 𝐂𝑠

−1𝐃�̂�i
−1�̂�′𝑖 

= 𝐆(𝑖+1)𝑇𝐂𝑑
−1𝐝(𝑖+1) + [𝐂𝑠 + 𝐃�̂�′𝑖

−1𝐃𝑇]
−1

𝐬(𝑖) + 𝐂𝑠
−1𝐃�̂�𝒊

−1�̂�′𝒊𝐦𝑃
(𝑖)

 

(38) 

Here we have used TV82-B and 𝐦𝑃
(𝑖) = �̂�𝒊

−1�̂�′𝑖. The terms ending in 𝐝(𝑖+1) match.  The terms ending in 

𝐬(𝑖) also match, since it has been established previously that �̃�𝑖
−1 = �̂�′𝒊

−1.  In order for �̃�𝑖+1 to equal �̂�𝑖+1, 

we must have 𝐦𝑃
(𝑖) = 𝐦𝐾

(𝑖)
 and: 

[𝐃�̃�𝑖
−1 𝐃𝑇 + 𝐂𝑠]

−1
𝐃 ≟ 𝐂𝑠

−1𝐃[�̂�′𝒊
−1 + 𝐃𝑇𝐂𝑠

−1𝐃]�̂�′𝒊 

(39) 

However, this equation has the same form a the identity in (36), where the equality was demonstrated.  

Starting with 𝑖 = 2, we have  𝐦𝑃
(2)

= 𝐦𝐾
(2)

 and �̂�′𝟐=�̃�𝟐, which implies �̂�′𝟑=�̃�𝟑 and  �̂�3 = �̃�3, which 

implies 𝐦𝑃
(3)

= 𝐦𝐾
(3)

. This process can be iterated indefinitely, establishing that the present-time Thomas 

and Kalman solutions, and their posterior variance, are equal. 

Comparison between the Present Time Solution and GLS 

The present time solutions at time, 𝑗, depends on information available for times, (𝑖 ≤ 𝑗) but not upon 

information that subsequently becomes available (that is, for times (𝑖 > 𝑗).  While this limitation is 

necessary real-time scenarios, wher.  However, the lack of future data leads to solution that is poorer 

estimate of the true solution, than a GLS solution in which the state vectors at all time are globally 

adjusted to best-fit all the prior information and data. 

An outlier that occurs at, or immediately before, the present moment can cause large error in the present 

time solution. The global solution is less affected because measurements in the near future may 

compensate (Fig. 1). 



 

Fig. 1. Hypothetical data assimilation scenario, with 𝐾 = 4, 𝑀 = 𝑁 = 1, D = 1, s = 0.25. The initial condition (red box) 

satisfies m𝐴
(0)

= 0. The dynamical equation requires that the slope (dotted red lines) be about 1 4⁄ . The data, 𝑑(𝑖), are noisy 

versions of state 𝑚(𝑖), which is expected to linearly increase with time with slope, s. When the “present time” is 𝑖 = 3, the 

present time solution (grey), 𝑚𝑃
(3)

, is pulled down by the noisy datum, 𝑑(𝑖), leading to a poor fit to the dynamics at that time.  The 

GLS solution,  𝑚𝐺
(3)

, is less affected by the outlier, because the datum at time, 𝑖 = 4, better defines the linear trend, leading to a 

solution at 𝑖 = 3 that better matched the dynamics. 

Having established links between KF and GLS, we are now able to apply several useful inverse theory 

concepts, and especially resolution (Backus and Gilbert, 1968; Wiggins 1972).  In a GLS problem, model 

resolution refers to the ability of the data assimilation process to reconstruct deviations of the true model 

from the one predicted by the prior information, alone (Menke, 2014). Data resolution refers to its ability 

to reconstruct deviations of the data from the one predicted by the prior information (Menke and Creel, 

2021).  Model resolution is quantified by a (𝐾𝑀) × (𝐾𝑀) matrix, 𝐑 = 𝐆−𝑔𝐆 and data resolution by a 

(𝐾𝑁) × (𝐾𝑁) matrix, 𝐍 = 𝐆𝐆−𝑔, that satisfy. 

(𝐦 − 𝐦𝐀) = 𝐑(𝐦𝑡𝑟𝑢𝑒 − 𝐦𝐀)    and    (𝐝 − 𝐆𝐦𝐀) = 𝐍(𝐦𝑡𝑟𝑢𝑒 − 𝐆𝐦𝐀) 

(40) 

Resolution is perfect when 𝐑 = 𝐍 = 𝐈.  When 𝐑 ≠ 𝐈, an element of the reconstructed state vector is a 

weighted average of all elements of the true state vector. When 𝐍 ≠ 𝐈, an element of the reconstructed 

data vector is a weighted average of all elements of the true data vector. The resolution matrices quantify 

resolution in both time and space. As we will show in the example, below, the model resolution (or data 

resolution) can be temporally poor, even when it is spatially good. 

Another important quantity is the full (𝐾𝑀) × (𝐾𝑀) posterior covariance matrix, 𝐂𝑚 = [𝐅𝑇𝐅]−1. In 

addition to correlations between elements of the state vector at a given time, it contains the correlations 

between elements of the state vectors at different times.  These coefficients are needed for computing 

confidence intervals of quantities that depend of the state vectors at two or more times.  Although 𝐑, 𝐍 

and 𝐂𝑚 are large matrices, methods are available for efficiently computing selected elements of them 

using the conjugate gradient method (Menke, 2014). 

Example 

We consider a data assimilation problem based on the heat diffusion equation (3), with ∆𝑡 = ∆𝑥 = 1 and 

𝑐0 = 0.4.  The state vector, 𝐦(𝑖), represents temperature and is of length 𝑀 = 31.  The source Gaussian 

in space and impulsive in time, according to 

𝑠𝑗
(𝑖) = exp [−½𝑠𝑥

−2(𝑥𝑗 − �̅�)
2
] 𝛿𝑖1 + 𝑛𝑠

(𝑗)
 



with scale length, 𝑠𝑥 = 5, and peak position, �̅� = ½𝑀∆𝑥.  Here, 𝑛𝑠
(𝑗)

 is a Normally-distributed random 

variable with zero mean and variance, 𝜎𝑠
2 = 0.05. The initial condition is: 

[m𝐴
(0)

]
𝑖
= 𝑚0 + 𝑛𝐴

(𝑗)
 

where 𝑚0 = 0.1 and 𝑛𝐴
(𝑗)

 is a Normally-distributed random variable with zero mean and variance, 𝜎𝑑
2 =

0.05. The dynamical equation (2) is iterated for 𝐾 = 61 time steps, to provide the “true” state vector. As 

expected, the solution has a Gaussian shape with a width that increases, and an amplitude that decreased, 

with time (Fig. 2A). The data are a total of 𝑁 = 10 temperature measurement at each time, 𝑖 ≥ 2, made at 

randomly-selected positions (without duplications) and perturbed with Normally-distributed random noise 

with zero mean and variance, 𝜎𝑑
2 = 0.07. 

GLS solutions were computed by both the full Thomas algorithm (Fig. 2B) and by solving the [𝐅𝑇𝐅]𝐦 =

𝐅𝑇𝐟 system by the conjugate gradient method (not shown). They were found to be identical to machine 

precision.  Present-time solutions were computed for both the present time Thomas (Fig. 2C) and Kalman 

Filtering algorithms (Fig. 2D).  They were also found to be identical to machine precision. 

 

Fig.2. Comparison of solutions.  (A) True solution. (B) Difference between the Generalized least squares solution and the true 

solution. (C) Difference between the present time Thomas solution and the true solution. (C) Difference between the Kalman 

solution and the true solution. Note that color scale for differences is expanded with respect to the one for the true model. 

In general, the both the GLS and present time solutions fit the data well.  However, the present time 

solution matches the true model more poorly than does the GLS solution (Fig. 3).  In this numerical 

experiment, the present time solution is about 10% poorer than the GLS solution, quantified with the root 

mean squared deviation from the true solution.  However, the percentage varies considerably when the 

underlying parameters are changed. 



 

Fig. 3. Histogram of ratios of the root mean squared error between the present time estimate, 𝐦𝑃
(𝑖)

, 𝑖 = 1,⋯ , 𝐾, and the true state 

and the root mean squared error between GLS estimate, 𝐦𝐺
(𝑖)

, 𝑖 = 1,⋯ , 𝐾, and the true state, for 1000 realizations of the 

exemplary data assimilation problem. 

Both the Thomas and Kalman versions of the present time algorithm are well suited for providing 

ongoing diagnostic information, such as posterior covariance and root mean squared data fitting error 

(Fig. 4), which can provide quality control in real time applications. 

 

 

Fig. 4.  Kalman Filtering solution of the exemplary data assimilation problem. (A) the data, 𝐝(𝑖), 𝑖 = 1,⋯ ,𝑁. (B) The estimated 

state 𝐦𝐾
(𝑖)

, 𝑖 = 1,⋯ , 𝐾. (C) The root mean square data prediction as a function of time, 𝑖. (D) The posterior variance as a function 

of time, 𝑖.  



The model resolution matrix, 𝐑, (Fig. 5A) for this exemplary problem has a poorly-populated central 

diagonal, meaning that some elements of the state vector, 𝑚𝑗
(𝑖)

, are well-resolved from their spatial 

neighbors, 𝑚𝑗±1
(𝑖)

while others are very poorly resolved.  The matrix large elements along other diagonals, 

corresponding to, offset from the main diagonal by 𝑀 rows, indicating that some elements are not well 

resolved from their temporal neighbors, 𝑚𝑗
(𝑖±1)

.   The data resolution matrix, 𝐍, (Fig. 5A has a well-

populated central diagonal, meaning that mosts elements of the predicted data vector, 𝑑𝑗
𝑝𝑟𝑒(𝑖)

, are well-

resolved from their spatial neighbors, 𝑑𝑗±1
(𝑖)

.  Like 𝐑, it also has elements along other diagonals, 

corresponding to, offset from the main diagonal by 𝑀 rows, indicating that some elements are not well 

resolved from their temporal neighbors, 𝑑𝑗
𝑝𝑟𝑒(𝑖𝑖±1)

.    

 

Fig. 5.  Central portion of the resolution matrices for the exemplary data assimilation problem. (A) The model resolution matrix, 

𝐑. (B) The data resolution matrix, 𝐍.  The portion shown corresponds time slices 20 ≤ 𝑖 ≤ 23. 

Summary 

In this paper, we examine a data processing scenario in which real-time data assimilation is performed 

using Kalman Filtering, and then reanalysis is performed using generalized least squares (GLS). In this 

problem, spatial characteristics of the system are described by a state vector (mode parameter vector), and 

its temporal characteristics by the evolution of the state-vector with time. We explore the relationship 

between the real-time Kalman Filter estimate and the GLS reanalysis estimate of the state vector.  We 

show that the KF solution at a given time is equal to the GLS solution that one would obtain if it excluded 

data for future times.  Furthermore, we show that the recursive procedure in KF is exactly equivalent to 

the solution of the GLS problem via Thomas’ algorithm for solving the block-tridiagonal matrix that 

arises in the reanalysis problem. This connection indicates that GLS reanalysis is better considered the 

final step of a single process, rather than a “different method” arbitrarily being applied, post factor.  Now 

that this connection between KF and GLS has seen identified, the familiar GLS concepts of model and 

data resolution can be applied to KF.  We provide an exemplary problem, based on thermal diffusion. In 

addition to showcasing our result, the example demonstrates that the state vector and vector of predicted 

data can be poorly-resolved in time, even when they are well-resolved in space. 
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Appendix 

A.1. Proof that  𝐂𝑚 = [𝐈 − 𝐆−𝑔𝐆]𝐂𝐴 ≡ 𝐏𝐺𝐂𝐴.  Because 𝐝 and 𝐦𝐴 are independent of one another, 𝐦𝐺 =

𝐆−𝑔(𝐝 − 𝐆𝐦𝐴) + 𝐦𝐴 = 𝐆−𝑔𝐝 + (I − 𝐆−𝑔𝐆)𝐦𝐴, the normal rules of error propagation apply.  The 

posterior covariance, 𝐂𝑚, is: 

𝐂𝑚 = 𝐆−𝑔𝐂𝑑𝐆−𝑔𝑇 + (𝐈 − 𝐆−𝑔𝐆)𝐂𝐴(𝐈 − 𝐆T𝐆−𝑔𝑇) = 

𝐂𝐴 + 𝐆−𝑔𝐂𝑑𝐆−𝑔𝑇 + 𝐆−𝑔𝐆𝐂𝐴𝐆T𝐆−𝑔𝑇 − 𝐂𝐴𝐆T𝐆−𝑔𝑇 − 𝐆−𝑔𝐆𝐂𝐴 = 

𝐂𝐴 + 𝐆−𝑔[𝐆𝐂𝐴𝐆T + 𝐂𝑑]𝐆−𝑔𝑇 − 𝐂𝐴𝐆T𝐆−𝑔𝑇 − 𝐆−𝑔𝐆𝐂𝐴 = 

= 𝐂𝐴 + 𝐂𝐴𝐆T𝐀−1𝐀𝐀−1𝐆𝐂𝐴 − 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 − 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 = 

= 𝐂𝐴 + 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 − 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 − 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 = 

= 𝐂𝐴 − 𝐂𝐴𝐆T𝐀−1𝐆𝐂𝐴 = 𝐂𝐴 − 𝐆−𝑔𝐆𝐂𝐴 = [𝐈 − 𝐆−𝑔𝐆]𝐂𝐴 ≡ 𝐏𝐺𝐂𝐴 

Here, we have used the fact that 𝐆−𝑔 = 𝐂𝐴𝐆T𝐀−1, with 𝐀 = [𝐆𝐂𝐴𝐆𝑇 + 𝐂𝑑].  Although the matrix, 𝐏𝐺 ≡
[𝐈 − 𝐆−𝑔𝐆], has the form of a projection operator, it is a function of 𝐂𝐴, and has deceptive properties.  

Consider the case in which 𝐂𝐴 = 𝜀𝐒, where 𝐒 is an invertible symmetric matrix. In the limit of the 

parameter, 𝜀, becoming indefinitely large, 𝐂𝑚 does not also become indefinitely large, but rather tends to 

a constant: 

lim
𝜀→∞

𝐂𝑚 = lim
𝜀→∞

{𝐈 − 𝜀𝐒𝐆𝑇[𝜀𝐆𝐒𝐆𝑇 + 𝐂𝑑]−1𝐆}𝜀𝐒 = 

lim
𝜀→∞

{𝐈 − 𝜀𝐒𝐆𝑇[𝜀−1𝐆𝑇−1𝐒−1𝐆−1 − 𝜀−2𝐆𝑇−1𝐒−1𝐆−1𝐂𝑑𝐆𝑇−1𝐒−1𝐆−1]𝐆}𝜀𝐒 = 

𝐆−1𝐂𝑑𝐆𝑇−1 = [𝐆𝑇𝐂𝑑
−1𝐆]

−1
 



This expression can be recognized as the posterior variance that arises from the data, only.  The zero limit 

is: 

lim
𝜀→0

𝐂𝑚 = lim
𝜀→0

{𝐈 − 𝜀𝐒𝐆𝑇[𝜀𝐆𝐒𝐆𝑇 + 𝐂𝑑]−1𝐆}𝜀𝐒 =  𝜀𝐒 = 𝟎 

That is, when 𝐦𝐴 is known very accurately, so is 𝐦𝐺. 

A.2. Derivation of the TV82-A and TV82-B identities, following Taantola and Valette (1982).  Consider 

invertible symmetric matrices, 𝐂1 and 𝐂2, and arbitrary matrix, 𝐌.  The expression 𝐌𝑇 + 𝐌𝑇𝐂1
−1 𝐌𝐂2𝐌

𝑇 

can alternately be factored: 

𝐌𝑇𝐂1
−1 [𝐂1 + 𝐌𝐂2𝐌

𝑇] = [𝐂2
−1 + 𝐌𝑇𝐂1

−1 𝐌]𝐂2𝐌
𝑇 

Multiplying by the inverses yields identity TV82-A: 

𝐂2𝐌
𝑇[𝐂1 + 𝐌𝐂2𝐌

𝑇]−1 = [𝐂2
−1 + 𝐌𝑇𝐂1

−1 𝐌]−1𝐌𝑇𝐂1
−1 

Now consider the expression 𝐂2 − 𝐂2𝐌
𝑇[𝐂1 + 𝐌𝐂2𝐌

𝑇]−𝟏𝐌𝐂2, which by the above identity equals 𝐂2 −

[𝐂2 + 𝐌𝑇𝐂1
−1 𝐌]−𝟏𝐌𝑇𝐂1

−1𝐌𝐂2. Factoring out the term in brackets  

[𝐂2
−1 + 𝐌𝑇𝐂1

−1 𝐌]−1 [[𝐂2
−1 + 𝐌𝑇𝐂1

−1 𝐌]𝐂2 − 𝐌𝑇𝐂1
−1𝐌𝐂2] 

cancelling terms yields identity TV82-B: 

𝐂2 − 𝐂2𝐌
𝑇[𝐂1 + 𝐌𝐂2𝐌

𝑇]−1𝐌𝐂2, = [𝐂2
−1 + 𝐌𝑇𝐂1

−1 𝐌]−𝟏 

A.3. Thomas (1949) algorithm for a symmetric block-diagonal matrix is well-known; we reproduce it 

here for completeness. The 𝑖th row of the matrix has elements 𝐁,  𝐀𝑖, 𝐁
𝑇 and the right-hand size is 𝐚𝑖. 

Consider the step in the upper-triangularization process when rows (𝑖 − 1) and above have been 

triangularized, but rows (𝑖 − 1) and below have not: 

�̂�𝑖−1𝐦
(𝑖−1) + 𝐁𝑇𝐦(𝑖) = �̂�𝑖−1 

𝐁𝐦(𝑖−1) + 𝐀𝑖𝐦
(𝑖) + 𝐁𝑇𝐦(𝑖+1) = 𝐚𝑖 

The second row is modified by multiply the top row by −𝐁�̂�𝒊−𝟏
−𝟏  and adding the result to the second, 

which eliminates the first term, yielding: 

[𝐀𝑖 − 𝐁�̂�𝑖−1
−1 𝐁𝑇]𝐦(𝑖) + 𝐁𝑇𝐦(𝑖+1) = 𝐚𝑖 − 𝐁�̂�𝑖−1

−1 �̂�𝑖−1 

Note that the new row has two terms, and that the coefficient of the second is always 𝐁𝑇, which is the 

same pattern as the first row.  Thus, the bottom row becomes a new top row, and the recursion is 

   �̂�1 = 𝐀1    followed by    �̂�𝑖 = [𝐀𝑖 − 𝐁�̂�𝑖−1
−1 𝐁𝑇] 

�̂�1 = 𝐚1    followed by   �̂�𝑖 = 𝐚𝑖 − 𝐁�̂�𝑖−1
−𝟏 �̂�𝑖−1 

or equivalently 

�̂�1
−1 = 𝐀1

−1    followed by    �̂�𝑖
−1 = [𝐀𝑖 − 𝐁�̂�𝑖−1

−1 𝐁𝑇]
−1

 

�̂�1 ≡ 𝐀1
−1�̂�1 = 𝐀1

−1𝐚1    followed by   �̂�𝑖 ≡ 𝐀𝑖
−1 �̂�𝑖 = 𝐀𝒊

−1[𝐚𝑖 − 𝐁�̂�𝑖−1
−1 �̂�𝑖−1] = 𝐀𝑖

−1[𝐛𝑖 − 𝐁�̂�𝑖−1] 



After the recursion, the matrix upper-bidiagonal with diagonals, �̂�𝑖 and 𝐁𝑇 and the right-hand side is �̂�𝑖. 

It is back-solved as: 

𝐦(𝐾) = �̂�𝐾
−1�̂�𝐾   followed by   𝐦(𝑖) = �̂�𝑖

−1[�̂�𝑖 − 𝐁𝑇𝐦(𝑖+1)] 

or equivalently 

𝐦(𝐾) = �̂�𝐾 = �̂�𝐾
−1�̂�𝐾   followed by   𝐦(𝑖) = �̂�𝑖

−1[�̂�𝑖 − 𝐁𝑻𝐦(𝑖−1)] = �̂�𝑖 − �̂�𝑖
−1𝐁𝑇𝐦(𝑖−1) 

A.4. Verification of the identity in (36) 

[𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]
−1𝐃 ≟ 𝐂𝑠

−1𝐃[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1]−1𝐃𝐂𝐴
−1 

[𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]
−1𝐃𝐂𝐴 ≟ 𝐂𝑠

−1𝐃[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1]−1 

𝐃𝐂𝐴[𝐃𝑇𝐂𝑠
−1𝐃 + 𝐂𝐴

−1] ≟ [𝐃𝐂𝐴𝐃𝑇 + 𝐂𝑠]𝐂𝑠
−1𝐃 

[𝐃𝐂𝐴𝐃𝑇𝐂𝑠
−1𝐃 + 𝐃] = [𝐃𝐂𝐴𝐃𝑇𝐂𝑠

−1𝐃 + 𝐃] 

 

 


