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Derivation: 
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with volume, 𝑉, density, 𝜌, and pressure, 𝑝. 

mass convervation: 
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= −∇ ∙ (𝜌𝑣) 

with fluid velocity, 𝑣. 

Darcy′s Law: 𝑣 = −𝑘∇𝑝 

with hydraulic conductivity, 𝑘.  

incompressible approximation: ∇ ∙ (𝜌𝑣) = 𝜌∇ ∙ 𝑣 

homeogeneity approximation: ∇ ∙ (𝑘∇𝑝) = 𝑘∇ ∙ (∇𝑝) = 𝑘∇2𝑝 

Putting it all together into the pressure diffusion equation: 
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with diffusivity, 𝜅 = 𝑘/𝛽. Poiseuille flow in a long, thin pipe: 
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with dynamic viscosity, 𝜇, pipe radius, 𝑅, and volumetric flow rate, 𝑄 (i.e. m3/s of flow in the pipe). We 

can write 𝑄 = 𝜋𝑅2�̅�, where �̅� is the average fluid velocity.  Equating the 𝑣 in Darcy’s law with �̅�, we 

have: 
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Thus, diffusivity increases with pipe radius and decreases with dynamic viscosity and compressibility. 

The one dimensional Green function for a source at 𝑧 = 0, 𝑡 = 0 is: 
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Note that 𝑔(𝑡) is a Gaussian of area, 𝐸0, and variance, 2𝜅𝑡, so that 

∫ 𝑔(𝑡) 𝑑𝑧
∞

−∞

= 𝐸0  at all times 𝑡 ≥ 0 

Pressure is a measure of energy density, so its integral over all 𝑧 is the total energy, 𝐸0, in the 

system, which by conservation of energy, is constant with time. 
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