Real-time Generalized Least Squares

Bill Menke, June 7, 2022

We imagine a generalized least squares (GLS) problem with space and time variability. The spatial part of the solution has size, \(M \), which is repeated for \(K + 1 \) time steps. The size of the problem grows with time, but we are most interested in the current ("last") time, \(K + 1 \). The Gram matrix of this problem has the form:

\[
\begin{bmatrix}
A & C^T \\
C & B
\end{bmatrix}
\begin{bmatrix}
m_1 \\
m_2
\end{bmatrix} =
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
\]

Here, the \(M \times M \) submatrix, \(B \), the \(M \times 1 \) right hand side (r.h.s) vector, \(a_2 \) and the \(M \times 1 \) solution vector, \(m_2 \), is associated with the final, \(K + 1 \), time step. The \(MK \times MK \) submatrix, \(A \), the \(MK \times 1 \) r.h.s. vector, \(a_1 \), and the \(MK \times 1 \) solution, \(m_1 \), is associated with the previous \(K \) time steps. The submatrix, \(C \) is \(M \times MK \).

The bordering method is used to construct the inverse of the Gram matrix. We start with the definition of the matrix inverse:

\[
\begin{bmatrix}
D & F^T \\
F & E
\end{bmatrix}
\begin{bmatrix}
A & C^T \\
C & B
\end{bmatrix} =
\begin{bmatrix}
I & 0 \\
0 & I
\end{bmatrix}
\]

We then multiply out this equation and solve for the initially unknown submatrices, \(D \), \(E \), and \(F \):

\[
DA + F^TC = I \quad \text{so} \quad D = [I - F^TC]A^{-1}
\]

\[
DC^T + F^TB = 0 \quad \text{so} \quad F^T = -DC^TB^{-1}
\]

\[
FA + EC = 0 \quad \text{so} \quad F = -ECA^{-1}
\]

\[
FC^T + EB = I \quad \text{so} \quad -ECA^{-1}C^T + EB = I \quad \text{so} \quad E = [B - CA^{-1}C^T]^{-1}
\]

\[
F = -ECA^{-1} = -[B - CA^{-1}C^T]^{-1}CA^{-1}
\]

\[
D = [I - F^TC]A^{-1} = [I + A^{-1}C^T]ECA^{-1} = [I + A^{-1}C^T][B - CA^{-1}C^T]^{-1}CA^{-1} = ZA^{-1}
\]

\[
D = ZA^{-1} \quad \text{with} \quad Z \equiv [I + A^{-1}C^T][B - CA^{-1}C^T]^{-1}C
\]

I have tested these formulas numerically; they give the matrix inverse to within machine precision. The solution of the GLS problem is:

\[
\begin{bmatrix}
m_1 \\
m_2
\end{bmatrix} =
\begin{bmatrix}
D & F^T \\
F & E
\end{bmatrix}^{-1}
\begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}
\]

We now develop an implementation of this formula, presuming that the solution, \(\hat{m}_1 = A^{-1}a_1 \) for the previous time steps is known. However, we do not want to explicitly construct any matrix inverses (and especially not \(A^{-1} \)) because they may not be sparse. Instead, we want to solve linear equations, say via the conjugate gradient method. We start by defining variables \(U \), \(Y \), and \(\hat{m}_2 \), all of which can be calculated by solving linear equations:

the \(MK \times M \) matrix \(U \): \(A^{-1}C^T \equiv U \quad \text{or} \quad AU = C^T \)

the \(M \times MK \) matrix \(Y \): \([B - CU]^{-1}C \equiv Y \quad \text{or} \quad [B - CU]Y = C \)

The size of the problem grows with time, we are most interested in the current ("last") time, \(K + 1 \). We start with the definition of the matrix inverse:
the $M \times 1$ vector \hat{m}_2: $B^{-1}a_2 \equiv \hat{m}_2$ or $B\hat{m}_2 = a_2$

These definitions imply:

$$E = [B - CU]^{-1}$$
$$Z = [I + UY]$$
$$D = [I + UY]A^{-1}$$

$$F^T a_2 = -DC^T B^{-1}a_2 = -DC^T \hat{m}_2$$

Then, we write

$$m_1 = Da_1 + F^T a_2 = [I + UY][\hat{m}_1 - U\hat{m}_2]$$

$$m_2 = Fa_1 + Ea_2 = E[a_2 - C\hat{m}_1]$$

or $[B - CU]m_2 = a_2 - C\hat{m}_1$

I have tested these formulas numerically. The recursion for the solution is then:

Step 1:

Set $K = 1$ and solve $A\hat{m}_1 = a_1$ for \hat{m}_1.

Step 2:

Increment K

Assign the submatrices B and C

Solve for U, Y, and \hat{m}_2

Solve for m_1 and m_2, the latter is the real-time solution

Step 3:

$$\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$$ becomes \hat{m}_1

$$\begin{bmatrix} A & C^T \\ C & B \end{bmatrix}$$ becomes A

Go to Step 2

The down side is that the effort needed to compute U and Y grows with time.

This procedure can be considered a generalization of Kalman filtering.