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We imagine a generalized least squares (GLS) problem with space and time variability. The spatial part of 

the solution has size, 𝑀, which is repeated for 𝐾 + 1 time steps. The size of the problem grows with time, 

but we are most interested in the current (“last”) time, 𝐾 + 1.  The Gram matrix of this problem has the 

form: 

[𝐀 𝐂𝑇

𝐂 𝐁
] [

𝐦𝟏

𝐦𝟐
] = [

𝐚𝟏

𝐚𝟐
] 

Here, the 𝑀 × 𝑀 submatrix, 𝐁, the 𝑀 × 1  right hand side (r.h.s) vector, 𝐚𝟐 and the 𝑀 × 1 solution 

vector, 𝐦𝟐 is associated with the final, 𝐾 + 1, time step. The 𝑀𝐾 × 𝑀𝐾 submatrix, 𝐀, the 𝑀𝐾 × 1 r.h.s. 

vector, 𝐚𝟏, and the 𝑀𝐾 × 1 solution, 𝐦𝟏, is associated with the previous 𝐾 time steps.  The submatrix, 𝐂 

is 𝑀 × 𝑀𝐾. 

The bordering method is used to construct the inverse of the Gram matrix.  We start with the definition of 

the matrix inverse: 

[𝐃 𝐅𝑇

𝐅 𝐄
] [𝐀 𝐂𝑇

𝐂 𝐁
] = [

𝐈 𝟎
𝟎 𝐈

] 

We then multiply out this equation and solve for the initially unknown submatrices, 𝐃, 𝐄, and 𝐅: 

𝐃𝐀 + 𝐅𝑇𝐂 = 𝐈    so    𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1 

𝐃𝐂𝑇 + 𝐅𝑇𝐁 = 𝟎    so  𝐅𝑇 = −𝐃𝐂𝑇𝐁−1 

𝐅𝐀 + 𝐄𝐂 = 𝟎    𝐬𝐨    𝐅 = −𝐄𝐂𝐀−1 

𝐅𝐂𝑇 + 𝐄𝐁 = 𝐈     so    − 𝐄𝐂𝐀−1𝐂𝑇 + 𝐄𝐁 = 𝐈    so    𝐄 = [𝐁 − 𝐂𝐀−1𝐂𝑇]−1 

𝐅 = −𝐄𝐂𝐀−1 = −[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂𝐀−1 

𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇𝐄𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂]𝐀−1 = 𝐙𝐀−1 

𝐃 = 𝐙𝐀−1   with   𝐙 ≡ [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂] 

I have tested these formulas numerically; they give the matrix inverse to within machine precision. The 

solution of the GLS problem is: 

[
𝐦𝟏

𝐦𝟐
] = [𝐃 𝐅𝑇

𝐅 𝐄
] [

𝐚𝟏

𝐚𝟐
] 

We now develop an implementation of this formula, presuming that the solution, 𝐦̂𝟏 = 𝐀−1𝐚𝟏 for the 

previous time steps is known. However, we do not want to explicitly construct any matrix inverses (and 

especially not 𝐀−1) because they may not be sparse. Instead, we want to solve linear equations, say via 

the conjugate gradient method.  We start by defining variables 𝐔, 𝐘, and 𝐦̂𝟐, all of which can be 

calculated by solving linear equations: 

the 𝑀𝐾 × 𝑀  matrix 𝐔:     𝐀−1𝐂𝑇 ≡ 𝐔    or    𝐀𝐔 = 𝐂𝑇 

the 𝑀 × 𝑀𝐾  matrix  𝐘:     [𝐁 − 𝐂𝐔]−1𝐂 ≡ 𝐘    or    [𝐁 − 𝐂𝐔]𝐘 = 𝐂 



the 𝑀 × 1   vector     𝐦̂𝟐:     𝐁−1𝐚𝟐 ≡ 𝐦̂𝟐   or   𝐁𝐦̂𝟐 = 𝐚𝟐 

These definitions imply: 

𝐄 = [𝐁 − 𝐂𝐔]−1 

𝐙 = [𝐈 + 𝐔𝒀] 

𝐃 = [𝐈 + 𝐔𝒀]𝐀−1 

𝐅𝑇𝐚𝟐 = −𝐃𝐂𝑇𝐁−1𝐚𝟐 = −𝐃𝐂𝑇𝐦̂𝟐 

Then, we write 

𝐦𝟏 = 𝐃𝐚𝟏 + 𝐅𝑇𝐚𝟐 = [𝐈 + 𝐔𝒀][𝐦̂𝟏 − 𝐔𝐦̂𝟐] 

𝐦𝟐 = 𝐅𝐚𝟏 + 𝐄𝐚𝟐 = 𝐄[𝐚𝟐 − 𝐂𝐦̂𝟏] 

or    [𝐁 − 𝐂𝐔]𝐦𝟐 = 𝐚𝟐 − 𝐂𝐦̂𝟏 

I have tested these formulas numerically. The recursion for the solution is then: 

Step 1: 

 Set 𝐾 = 1 and solve 𝐀𝐦̂𝟏 = 𝐚𝟏 for 𝐦̂𝟏. 

Step 2: 

Increment 𝐾 

Assign the submatrices 𝐁 and C 

 Solve for 𝐔, 𝐘, and 𝐦̂𝟐 

 Solve for 𝐦𝟏 and 𝐦𝟐, the latter is the real-time solution 

Step 3: 

[
𝐦𝟏

𝐦𝟐
]   becomes  𝐦̂𝟏  

[𝐀 𝐂𝑇

𝐂 𝐁
]  becomes  𝐀  

Go to Step 2 

The down side is that the effort needed to compute 𝐔 and 𝐘 grows with time. 

This procedure can be considered a generalization of Kalman filtering. 


