
Real-time Generalized Least Squares

Bill Menke, June 7, 2022

We imagine a generalized least squares (GLS) problem with space and time variability. The spatial part of

the solution has size, 𝑀, which is repeated for 𝐾 + 1 time steps. The size of the problem grows with time,

but we are most interested in the current (“last”) time, 𝐾 + 1. The Gram matrix of this problem has the

form:

[𝐀 𝐂𝑇

𝐂 𝐁
] [

𝐦𝟏

𝐦𝟐
] = [

𝐚𝟏

𝐚𝟐
]

Here, the 𝑀 × 𝑀 submatrix, 𝐁, the 𝑀 × 1 right hand side (r.h.s) vector, 𝐚𝟐 and the 𝑀 × 1 solution

vector, 𝐦𝟐 is associated with the final, 𝐾 + 1, time step. The 𝑀𝐾 × 𝑀𝐾 submatrix, 𝐀, the 𝑀𝐾 × 1 r.h.s.

vector, 𝐚𝟏, and the 𝑀𝐾 × 1 solution, 𝐦𝟏, is associated with the previous 𝐾 time steps. The submatrix, 𝐂

is 𝑀 × 𝑀𝐾.

The bordering method is used to construct the inverse of the Gram matrix. We start with the definition of

the matrix inverse:

[𝐃 𝐅𝑇

𝐅 𝐄
] [𝐀 𝐂𝑇

𝐂 𝐁
] = [

𝐈 𝟎
𝟎 𝐈

]

We then multiply out this equation and solve for the initially unknown submatrices, 𝐃, 𝐄, and 𝐅:

𝐃𝐀 + 𝐅𝑇𝐂 = 𝐈 so 𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1

𝐃𝐂𝑇 + 𝐅𝑇𝐁 = 𝟎 so 𝐅𝑇 = −𝐃𝐂𝑇𝐁−1

𝐅𝐀 + 𝐄𝐂 = 𝟎 𝐬𝐨 𝐅 = −𝐄𝐂𝐀−1

𝐅𝐂𝑇 + 𝐄𝐁 = 𝐈 so − 𝐄𝐂𝐀−1𝐂𝑇 + 𝐄𝐁 = 𝐈 so 𝐄 = [𝐁 − 𝐂𝐀−1𝐂𝑇]−1

𝐅 = −𝐄𝐂𝐀−1 = −[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂𝐀−1

𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇𝐄𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂]𝐀−1 = 𝐙𝐀−1

𝐃 = 𝐙𝐀−1 with 𝐙 ≡ [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂]

I have tested these formulas numerically; they give the matrix inverse to within machine precision. The

solution of the GLS problem is:

[
𝐦𝟏

𝐦𝟐
] = [𝐃 𝐅𝑇

𝐅 𝐄
] [

𝐚𝟏

𝐚𝟐
]

We now develop an implementation of this formula, presuming that the solution, �̂�𝟏 = 𝐀−1𝐚𝟏 for the

previous time steps is known. However, we do not want to explicitly construct any matrix inverses (and

especially not 𝐀−1) because they may not be sparse. Instead, we want to solve linear equations, say via

the conjugate gradient method. We start by defining variables 𝐔, 𝐘, and �̂�𝟐, all of which can be

calculated by solving linear equations:

the 𝑀𝐾 × 𝑀 matrix 𝐔: 𝐀−1𝐂𝑇 ≡ 𝐔 or 𝐀𝐔 = 𝐂𝑇

the 𝑀 × 𝑀𝐾 matrix 𝐘: [𝐁 − 𝐂𝐔]−1𝐂 ≡ 𝐘 or [𝐁 − 𝐂𝐔]𝐘 = 𝐂

the 𝑀 × 1 vector �̂�𝟐: 𝐁−1𝐚𝟐 ≡ �̂�𝟐 or 𝐁�̂�𝟐 = 𝐚𝟐

These definitions imply:

𝐄 = [𝐁 − 𝐂𝐔]−1

𝐙 = [𝐈 + 𝐔𝒀]

𝐃 = [𝐈 + 𝐔𝒀]𝐀−1

𝐅𝑇𝐚𝟐 = −𝐃𝐂𝑇𝐁−1𝐚𝟐 = −𝐃𝐂𝑇�̂�𝟐

Then, we write

𝐦𝟏 = 𝐃𝐚𝟏 + 𝐅𝑇𝐚𝟐 = [𝐈 + 𝐔𝒀][�̂�𝟏 − 𝐔�̂�𝟐]

𝐦𝟐 = 𝐅𝐚𝟏 + 𝐄𝐚𝟐 = 𝐄[𝐚𝟐 − 𝐂�̂�𝟏]

or [𝐁 − 𝐂𝐔]𝐦𝟐 = 𝐚𝟐 − 𝐂�̂�𝟏

I have tested these formulas numerically. The recursion for the solution is then:

Step 1:

 Set 𝐾 = 1 and solve 𝐀�̂�𝟏 = 𝐚𝟏 for �̂�𝟏.

Step 2:

Increment 𝐾

Assign the submatrices 𝐁 and C

 Solve for 𝐔, 𝐘, and �̂�𝟐

 Solve for 𝐦𝟏 and 𝐦𝟐, the latter is the real-time solution

Step 3:

[
𝐦𝟏

𝐦𝟐
] becomes �̂�𝟏

[𝐀 𝐂𝑇

𝐂 𝐁
] becomes 𝐀

Go to Step 2

The down side is that the effort needed to compute 𝐔 and 𝐘 grows with time.

This procedure can be considered a generalization of Kalman filtering.

