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We imagine a generalized least squares (GLS) problem with space and time variability. The spatial part of 

the solution has size, 𝑀, which is repeated for 𝐾 + 1 time steps. The size of the problem grows with time, 

but we are most interested in the current (“last”) time, 𝐾 + 1.  The Gram matrix of this problem has the 

form: 

[𝐀 𝐂𝑇

𝐂 𝐁
] [

𝐦𝟏

𝐦𝟐
] = [

𝐚𝟏

𝐚𝟐
] 

Here, the 𝑀 × 𝑀 submatrix, 𝐁, the 𝑀 × 1  right hand side (r.h.s) vector, 𝐚𝟐 and the 𝑀 × 1 solution 

vector, 𝐦𝟐 is associated with the final, 𝐾 + 1, time step. The 𝑀𝐾 × 𝑀𝐾 submatrix, 𝐀, the 𝑀𝐾 × 1 r.h.s. 

vector, 𝐚𝟏, and the 𝑀𝐾 × 1 solution, 𝐦𝟏, is associated with the previous 𝐾 time steps.  The submatrix, 𝐂 

is 𝑀 × 𝑀𝐾. 

The bordering method is used to construct the inverse of the Gram matrix.  We start with the definition of 

the matrix inverse: 

[𝐃 𝐅𝑇

𝐅 𝐄
] [𝐀 𝐂𝑇

𝐂 𝐁
] = [

𝐈 𝟎
𝟎 𝐈

] 

We then multiply out this equation and solve for the initially unknown submatrices, 𝐃, 𝐄, and 𝐅: 

𝐃𝐀 + 𝐅𝑇𝐂 = 𝐈    so    𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1 

𝐃𝐂𝑇 + 𝐅𝑇𝐁 = 𝟎    so  𝐅𝑇 = −𝐃𝐂𝑇𝐁−1 

𝐅𝐀 + 𝐄𝐂 = 𝟎    𝐬𝐨    𝐅 = −𝐄𝐂𝐀−1 

𝐅𝐂𝑇 + 𝐄𝐁 = 𝐈     so    − 𝐄𝐂𝐀−1𝐂𝑇 + 𝐄𝐁 = 𝐈    so    𝐄 = [𝐁 − 𝐂𝐀−1𝐂𝑇]−1 

𝐅 = −𝐄𝐂𝐀−1 = −[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂𝐀−1 

𝐃 = [𝐈 − 𝐅𝑇𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇𝐄𝐂]𝐀−1 = [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂]𝐀−1 = 𝐙𝐀−1 

𝐃 = 𝐙𝐀−1   with   𝐙 ≡ [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂] 

I have tested these formulas numerically; they give the matrix inverse to within machine precision. The 

solution of the GLS problem is: 

[
𝐦𝟏

𝐦𝟐
] = [𝐃 𝐅𝑇

𝐅 𝐄
] [

𝐚𝟏

𝐚𝟐
] 

We now develop an implementation of this formula, presuming that the solution, �̂�𝟏 = 𝐀−1𝐚𝟏 for the 

previous time steps is known. However, we do not want to explicitly construct any matrix inverses (and 

especially not 𝐀−1) because they may not be sparse. Instead, we want to solve linear equations, say via 

the conjugate gradient method.  We start by defining variables 𝐔, 𝐘, and �̂�𝟐, all of which can be 

calculated by solving linear equations: 

the 𝑀𝐾 × 𝑀  matrix 𝐔:     𝐀−1𝐂𝑇 ≡ 𝐔    or    𝐀𝐔 = 𝐂𝑇 

the 𝑀 × 𝑀𝐾  matrix  𝐘:     [𝐁 − 𝐂𝐔]−1𝐂 ≡ 𝐘    or    [𝐁 − 𝐂𝐔]𝐘 = 𝐂 



the 𝑀 × 1   vector     �̂�𝟐:     𝐁−1𝐚𝟐 ≡ �̂�𝟐   or   𝐁�̂�𝟐 = 𝐚𝟐 

These definitions imply: 

𝐄 = [𝐁 − 𝐂𝐔]−1 

𝐙 = [𝐈 + 𝐔𝒀] 

𝐃 = [𝐈 + 𝐔𝒀]𝐀−1 

𝐅𝑇𝐚𝟐 = −𝐃𝐂𝑇𝐁−1𝐚𝟐 = −𝐃𝐂𝑇�̂�𝟐 

Then, we write 

𝐦𝟏 = 𝐃𝐚𝟏 + 𝐅𝑇𝐚𝟐 = [𝐈 + 𝐔𝒀][�̂�𝟏 − 𝐔�̂�𝟐] 

𝐦𝟐 = 𝐅𝐚𝟏 + 𝐄𝐚𝟐 = 𝐄[𝐚𝟐 − 𝐂�̂�𝟏] 

or    [𝐁 − 𝐂𝐔]𝐦𝟐 = 𝐚𝟐 − 𝐂�̂�𝟏 

I have tested these formulas numerically. The recursion for the solution is then: 

Step 1: 

 Set 𝐾 = 1 and solve 𝐀�̂�𝟏 = 𝐚𝟏 for �̂�𝟏. 

Step 2: 

Increment 𝐾 

Assign the submatrices 𝐁 and C 

 Solve for 𝐔, 𝐘, and �̂�𝟐 

 Solve for 𝐦𝟏 and 𝐦𝟐, the latter is the real-time solution 

Step 3: 

[
𝐦𝟏

𝐦𝟐
]   becomes  �̂�𝟏  

[𝐀 𝐂𝑇

𝐂 𝐁
]  becomes  𝐀  

Go to Step 2 

The down side is that the effort needed to compute 𝐔 and 𝐘 grows with time. 

This procedure can be considered a generalization of Kalman filtering. 


