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Statement of the problem:  Gaussian Process Regression (GPR) is used to estimate a set of model 

parameters that represent a discretized field using data and prior information about the autocovariance of 

the field.  At every time increment, new data become available. We seek an efficient method for 

continually updating the estimate to include the new data.  This process can be considered real-time GPR. 

We use the formulation of Gaussian Process Regression (GPR) in which the model parameters 𝐦 =

[𝐦(𝑡); 𝐦(𝑐)] are divided into target, 𝑡, and control, 𝑐, types, the latter of which are observed by data, 𝐝.  

The target points might represent a gridded version of the field, and the control points 

observations of the field at irregularly-spaced locations. The prior covariance of the model 

parameters is 𝐂𝑚 and the variance of the data is 𝜎𝑑
2𝐈. The GPR estimate of the model parameters 

is then: 

∆𝐦 ≡ [∆𝐦(𝑡)

∆𝐦(𝑐)
] = [

𝐂𝑚
(𝑡𝑐)

𝐂𝑚
(𝑐𝑐)

] 𝐮 

with   𝐌𝐮 = ∆𝐝    and    𝐌 ≡  𝐂𝑚
(𝑐𝑐)

+ 𝜎𝑑
2𝐈  

and    ∆𝐦 ≡ 𝐦𝑒𝑠𝑡 − 𝐦𝑝𝑟𝑖     and      ∆𝐝 ≡ 𝐝𝑜𝑏𝑠 − 𝐦(𝑐,𝑝𝑟𝑖) 

(1) 

We now suppose that we know the vector, �̂�𝟏, when 𝑁1 data, ∆𝐝𝟏, are available, and seek to understand 

how to calculate the vector, 𝐮 ≡ [𝐮𝟏;  𝐮𝟐], when an additional 𝑁2 data are provided: 

[𝐀][�̂�𝟏] = [∆𝐝𝟏]    and   [𝐀 𝐂𝑇

𝐂 𝐁
] [

𝐮𝟏

𝐮𝟐
] = [

∆𝐝𝟏

∆𝐝𝟐
] 

∆�̂�(𝑡) = 𝐂𝑚
(𝑡𝑐1)

�̂�𝟏    and    ∆𝐦(𝑡) = [𝐂𝑚
(𝑡𝑐1) 𝐂𝑚

(𝑡𝑐2)] [
𝐮𝟏

𝐮𝟐
] 

∆�̂�(𝑐) = {𝐀 − 𝜎𝑑
2𝐈}�̂�𝟏    and    ∆𝐦(𝑐) = [∆𝐦(𝑐1)

∆𝐦(𝑐2)
] = [𝐀 𝐂𝑇

𝐂 𝐁
] [

𝐮𝟏

𝐮𝟐
] − 𝜎𝑑

2 [
𝐮𝟏

𝐮𝟐
] 

(2) 

Here, the variables with hats refer to the solution when 𝑁1 are available, and those without hats refer to 

when 𝑁1 + 𝑁2 are available.  The sub-matrices are defined as 𝐀 ≡ 𝐂𝑚
(𝑐1𝑐1) + 𝜎𝑑

2𝐈, 𝐁 ≡ 𝐂𝑚
(𝑐2𝑐2)

+ 𝜎𝑑
2𝐈 

and 𝐂 ≡ 𝐂𝑚
(𝑐1𝑐2)

, where the superscript 𝑐1 denotes the 𝑁1 control points and 𝑐2 denotes the 𝑁2 

control points. The bordering method can be used to show that  

[𝐀 𝐂𝑇

𝐂 𝐁
]

−1

= [𝐃 𝐅𝑇

𝐅 𝐄
] 

(3) 



with 

𝐃 = 𝐙𝐀−1   with   𝐙 ≡ [𝐈 + 𝐀−1𝐂𝑇[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂] 

 𝐄 = [𝐁 − 𝐂𝐀−1𝐂𝑇]−1 

𝐅 = −[𝐁 − 𝐂𝐀−1𝐂𝑇]−1𝐂𝐀−1 

(4) 

We now introduce the quantities 

𝐔   such that     𝐔 = 𝐀−1𝐂𝑇 

𝐘    such that      [𝐁 − 𝐂𝐔]𝐘 = 𝐂 

 �̂�𝟐     such that     𝐁�̂�𝟐 = ∆𝐝𝟐 

(5) 

These definitions imply: 

𝐃 = [𝐈 + 𝐔𝒀]𝐀−1 

𝐄 = [𝐁 − 𝐂𝐔]−1 

𝐅 = −𝐄𝐔𝑇 

(6) 

Then the solution for 𝐮 ≡ [𝐮𝟏;  𝐮𝟐] is: 

𝐮𝟏 = [𝐈 + 𝐔𝒀][�̂�𝟏 − 𝐔�̂�𝟐] 

[𝐁 − 𝐂𝐔]𝐮𝟐 = ∆𝐝𝟐 − 𝐂�̂�𝟏 

(7) 

These formulas have been tested numerically. The recursion for the solution is then: 

Step 1: 

 Set 𝐾 = 1 

Set 𝑁1 to the number of data available for the Set 𝐾 = 1 time step 

 Calculate the matrices, 𝐀 = 𝐂𝑚
(𝑐1𝑐1) + 𝜎𝑑

2𝐈 and 𝐂𝑚
(𝑡𝑐1)

 

Compute 𝐀−1 and �̂�𝟏 = 𝐀−1∆𝐝𝟏 

Solve for ∆�̂�(𝑡) and ∆�̂�(𝑐) as in Eqn (2) 

 



Step 2: 

Increment 𝐾 

Set 𝑁2 to the number of new data 

Calculate the submatrices 𝐁 = 𝐂𝑚
(𝑐2𝑐2) + 𝜎𝑑

2𝐈 , 𝐂 = 𝐂𝑚
(𝑐1𝑐2)

 and 𝐂𝑚
(𝑡𝑐2)

 

 Solve for 𝐔, 𝐘, and �̂�𝟐 as in Eqn (5) 

 Solve for 𝐮𝟏 and 𝐮𝟐 as in Eqn (7) 

 Perform multiplications to get ∆𝐦(𝑡) and ∆𝐦(𝑐) as in Eqn (2) 

Step 3: 

[
𝐮𝟏

𝐮𝟐
]   becomes  �̂�𝟏  

[𝐀 𝐂𝑇

𝐂 𝐁
]  becomes  𝐀  

[𝐃 𝐅𝑇

𝐅 𝐄
]  becomes  𝐀−1 

Refine 𝐀−1 as described in the note, below 

[𝐂𝑚
(𝑡𝑐1)

𝐂𝑚
(𝑡𝑐2)] becomes  𝐂𝑚

(𝑡𝑐1)
  

𝑁1 + 𝑁2 becomes 𝑁1 

Go to Step 2 

Note that the effort needed to update the solution grows with each iteration, because the size of 𝐔 and 𝐘 

continually increases.  Furthermore, the rate of growth is faster than linear in time.  This in in contrast to 

Kalman filtering, where the effort is constant.  The difference arises from sparsity. The fundamental 

matrix of Kalman filtering is sparse; the matrix, 𝐀, is not. 

Note: I have found necessary refining 𝐀−1 after each application of the bordering method, using an 

iterative first-order correction scheme.  Assume that the 𝐀−1 resulting from bordering – say  𝐀′−1 - is 

inaccurate by a small amount ∆𝐃, so that 𝐀 = [𝐀′−1 + ∆𝐃]−1. Then, we use the first order rule 

[𝐀′−1 + ∆𝐃]−1 = [𝐀′−1]−1 − [𝐀′−1]−1∆𝐃[𝐀′−1]−1 to write 𝐀 = [𝐀′−1]−1 − [𝐀′−1]−1∆𝐃[𝐀′−1]−1. 

Solving for ∆𝐃 yields ∆𝐃 = 𝐀′−1 − 𝐀′−1𝐀𝐀′−1 and an improved estimate of the inverse is 𝐀−1 =

𝐀′−1 + ∆𝐃.  A few (sat, 3) iterations of this procedure correct errors introduced by successive 

application of bordering. 

Example: The goal of this numerical experiment is to reconstruct a two-dimensional field, 𝑚(𝑥, 𝑦), on 

the interval 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1, evaluated on a 30 × 30 grid of uniformly-spaced target points.  At 

each time step, a total of 5 data are collected, drawn at randomly chosen points from the true function 

𝑚(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦) and with variance 𝜎𝑑
2 = 0.01  The field is assumed to have the Gaussian 

autocovariace, 𝐶(𝑥, 𝑥′, 𝑦, 𝑦′) = exp(−½𝑟2/𝑠2), with 𝑟2 = (𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 and scale length 𝑠 =

0.22.  The reconstruction systematically improves with time, as new data are obtained (Fig. 1). 

 



 

Figure 1.  The sinusoidal field, 𝑚(𝑥, 𝑦), reconstructed at a sequence of 9 time steps.  Five data are added 

in each time step. 


