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We start with the usual formulation of an inverse problem: 

minimize 𝐸 = (𝑢 − 𝑑, 𝑢 − 𝑑)  with the constraint ℒ𝑢 − 𝑓 = 0 

and entertain the possibility that ℒ is not invertble.  The Lagrange equation is: 

(𝑢 − 𝑑, 𝑢 − 𝑑) + 2(𝜆, ℒ𝑢 − 𝑓) = (𝑢 − 𝑑, 𝑢 − 𝑑) + 2(𝜆, ℒ𝑢) − 2(𝜆, 𝑓) 

where 2𝜆 is the Lagrange multiplier. Fréchet differentiating with respect to 𝜆 and setting the 

result to zero returns the constraint differential, ℒ𝑢 − 𝑓 = 0. In order to Fréchet differentiate 

with respect to 𝑢 we must rewrite the equation as  

(𝑑 − 𝑢, 𝑑 − 𝑢) + 2(ℒ†𝜆, 𝑢) − 2(𝜆, 𝑓) 

Fréchet differentiating yields  

𝑢 = 𝑑 − ℒ†𝜆 

Here, we have used 𝛿𝑝(𝑥) 𝛿𝑝(𝑥′)⁄ = 𝛿(𝑥 − 𝑥′). Inserting this expression into the differential 

equation eliminates 𝑢, yielding 

0 = ℒ𝑢 − 𝑓 = ℒ[𝑑 − ℒ†𝜆] − 𝑓 = ℒ𝑑 − ℒℒ† − 𝑓 

so    ℒℒ† = ℒ𝑑 − 𝑓 

ℒℒ†𝜆 = ℒ𝑑 − 𝑓 = ℒ(𝑒 + 𝑢) − 𝑓 = ℒ𝑒 + (ℒ𝑢 − 𝑓) = ℒ𝑒 

so    ℒℒ†𝜆 = ℒ𝑒 

This is a differential equation for the Lagrange multiplier, 𝜆. However, it is differetnt than the 

one commonly encountered in the invertible case, which is ℒ†𝜆 = 𝑒. After ℒℒ†𝜆 = ℒ𝑒 is solved, 

𝑢 = 𝑑 − ℒ†𝜆 gives the solution. Note that when ℒ−1 exists, 𝑢 = 𝑑 − ℒ†[[ℒℒ†]−1(ℒ𝑑 − 𝑓)] =

ℒ−1𝑓. That is, the minimization only adds information when ℒ is uninvertible, 

As an example, suppose that the problem is 

find the 𝐮 that minimizes  (𝐮 − 𝐝, 𝐮 − 𝐝)  subject to the constraint ∇ ∙ 𝐮 − 𝑓 = 0  

Note that the constraint does not fully specify 𝐮, because ∇ × 𝐯, for any function, 𝐯, can be added 

to 𝐮 without violating it. Then, ℒ = ∇ ∙, ℒ† = −∇, ℒℒ† = −∇2 and 𝜆 solves Poisson’s equation 

∇2𝜆 = ∇ ∙ 𝐝 − 𝐟.  Poisson’s equation is invertible, and with a well-known Green function, so we 

can uniquely solve for 𝜆. Once 𝜆 is determined, the solution is 𝐮 = 𝐝 + ∇𝜆.  Furthermore, ∇ ×

𝐮 = ∇ × 𝐝; that is, information on the curl of 𝐮 arise from 𝐝, alone, and not involve the 

constraint. 



I haven’t pursued the matter in any detail, but it seems to me that solving the adjoint equation 

when the error, 𝑒, is known at only are points might be problematical, because ℒ𝑒 would seem to 

require derivatives of 𝑒. 

The Implicit Function Theorem (I.F.T.) can be used to calculate 𝜕𝐮 𝜕𝑝⁄  .  Let me fall back to 

the discrete problem: 

(𝐝 − 𝐮)𝑇(𝐝 − 𝐮) + 2(𝐋𝐮 − 𝐟)𝑇𝛌    with    𝐋(𝑝)   and fixed  𝑝 

𝜕

𝜕𝑢𝒊
 gives 𝑁 equations, ℎ𝑖

𝐴 = 0: 𝐝 − 𝐮 + 𝐋𝑻𝛌 = 𝟎 

𝜕

𝜕λ𝑖
 gives 𝑁 equation , ℎ𝑖

𝐵 = 0: 𝐋𝐮 − 𝐟 = 𝟎     

Here, the functions ℎ𝑖
𝐴 and ℎ𝑖

𝐵 are abbreviations for the left-hand-side of the Lagrange 

derivatives. The unknowns are 𝐮, 𝛌, 𝑝, and the number of unknowns is 2𝑁 + 1. The number 

of equations is 2𝑁 + 1.  Jacobian derivatives are: 

𝜕ℎ𝑖
𝐴

𝜕𝑢𝒋
= −𝛿𝑖𝑗   and    

𝜕ℎ𝑖
𝐴

𝜕λ𝒋
= 𝐿𝑗𝑖     and    

𝜕ℎ𝑖
𝐴

𝜕𝑝
= λ𝒋

𝜕𝐿𝑗𝑖

𝜕𝑝
      

𝜕ℎ𝑖
𝐵

𝜕𝑢𝒋
= 𝐿𝑖𝑗    and    

𝜕ℎ𝑖
𝐵

𝜕λ𝒋
= 0    and   

𝜕ℎ𝑖
𝐵

𝜕𝑝
=

𝜕𝐿𝑖𝑗

𝜕𝑝
𝑢𝑗       

We ill set up the I.F.T. with independent variable is 𝑥1: 𝑝 and dependent variables 

𝑦1 ⋯𝑦2𝑁: 𝐮, 𝛌. The two parts of the Jacobian are: 

𝐉𝐲 =

[
 
 
 
 
𝜕ℎ𝑖

𝐴

𝜕𝑢𝒋

𝜕ℎ𝑖
𝐴

𝜕λ𝒋

𝜕ℎ𝑖
𝐵

𝜕𝑢𝒋

𝜕ℎ𝑖
𝐵

𝜕𝑢𝒋 ]
 
 
 
 

= [−𝐈 𝐋𝑻

𝐋 𝟎
]     so   𝐉𝒚

−1 = [
𝟎 𝐋𝑻[𝐋𝐋𝑻]−𝟏

𝐋[𝐋𝑻𝐋]−𝟏 −[𝐋𝐋𝑻]−𝟏 ] 

𝐉𝐱 =

[
 
 
 
 
𝜕ℎ𝑖

𝐴

𝜕𝑝

𝜕ℎ𝑖
𝐵

𝜕𝑝 ]
 
 
 
 

=

[
 
 
 
 𝛌𝑇

𝜕𝐋

𝜕𝑝
𝜕𝐋

𝜕𝑝
𝐮

]
 
 
 
 

 

Finally, according to the implicit function theorem, for a 𝑝0, 𝐮(𝑝0), 𝛌(𝑝0) for which the Lagrange 

derivatives are zero: 

[
 
 
 
 
𝜕𝐮

𝜕𝑝
𝜕𝛌

𝜕𝑝]
 
 
 
 

𝑝0,𝐮(𝑝0),𝛌(𝑝0)

= −𝐉𝒚
−1𝐉𝐱 = −

[
 
 
 
 𝐋𝑇[𝐋𝐋𝑇]−𝟏

𝜕𝐋

𝜕𝑝
𝐮

𝐋[𝐋𝑇𝐋]−1𝛌𝑇
𝜕𝐋

𝜕𝑝
− [𝐋𝐋𝑇]−1

𝜕𝐋

𝜕𝑝
𝐮
]
 
 
 
 

𝑝0,𝐮(𝑝0),𝛌(𝑝0)

 



so  
𝜕𝐮

𝜕𝑝
|
𝑝0,𝐮(𝑝0),𝛌(𝑝0)

= −𝐋𝑇[𝐋𝐋𝑇]−1
𝜕𝐋

𝜕𝑝
𝐮|

𝑝0,𝐮(𝑝0),𝛌(𝑝0)

 

For an invertible matrix, 𝐋, 𝜕𝐮 𝜕𝑝⁄ = −𝐋−1 𝜕𝐋

𝜕𝑝
𝐮, which is the result obtained by 

differentiating 𝐮 = 𝐋−1𝐟.:  

𝜕𝐮

𝜕𝑝
=

𝜕

𝜕𝑝
(𝐋−1𝐟) =

𝜕𝐋−1

𝜕𝑝
𝐟 = −𝐋−1

𝜕𝐋

𝜕𝑝
𝐋−1𝐟 = −𝐋−1

𝜕𝐋

𝜕𝑝
𝐮 

Finally 

𝜕E

𝜕𝑝
|
𝑝0,𝐮(𝑝0),𝛌(𝑝0)

= −𝐞𝑇 𝜕𝐮 𝜕𝑝⁄ = 𝐞𝑇𝐋−1
𝜕𝐋

𝜕𝑝
𝐮 = (𝐋𝑇−1𝐞)𝑇

𝜕𝐋

𝜕𝑝
𝐮 = 

𝛌(𝑝0)
𝑇
𝜕𝐋

𝜕𝑝
|
𝑝0

𝐮(𝑝0)    with    𝐋(𝑝0)
𝑇𝛌(𝑝0) = 𝐞(𝑝0) 

So, it its established that, in the formulas, 𝐮 and 𝛌 must solve the Lagrange conditions for 

the 𝑝 under consideration. That is, they must minimize the error for this fixed value of 𝑝.   

I was hoping to find a way to calculate 𝜕E 𝜕𝑝⁄  directly, without using the chain rule, but 

don’t see a pathway to doing it.  

As an ancillary matter, the derivation also shows that in cases in which 𝐋, and therefore 𝐋𝑇 

𝐋𝑇is not invertible,  

𝜕E

𝜕𝑝
|
𝑝0,𝐮(𝑝0),𝛌(𝑝0)

= −𝐞𝑇 𝜕𝐮 𝜕𝑝⁄ = 𝐞𝑇𝐋𝑇[𝐋𝐋𝑇]−1
𝜕𝐋

𝜕𝑝
𝐮

𝜕𝐋

𝜕𝑝
𝐮 = ([𝐋𝐋𝑇]−1𝐋𝐞)𝑇

𝜕𝐋

𝜕𝑝
𝐮

= 𝛌𝑇
𝜕𝐋

𝜕𝑝
𝐮   with   [𝐋𝐋𝑇]−1𝛌 = 𝐋𝐞 

That is, the adjoint equation is different than in the invertible case. 


