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Consider a linear inverse problem, 𝐆𝐦 = 𝐝, with 𝑁 = 2 data, 𝐝, and 𝑀 = 3 model parameters, 

𝐦. Taken individually, each datum constrains the model parameters to lie on a plane (Figure 

1A). Taken together, they constrain the model parameters to lie on a line, 𝐴𝐵̅̅ ̅̅ .  The solution is 

nonunique, because any point, 𝐦𝐴 (yellow star in Figure 1B), on the line satisfies the data.  Now, 

suppose we define two local coordinate systems centered on some point, 𝐦0 (green circle), that 

is near 𝐦𝐴: the unprimed system (∆𝑚1, ∆𝑚2, ∆𝑚3) with axes parallel to (𝑚1, 𝑚2, 𝑚3); and the 

primed system (∆𝑚′1, ∆𝑚′2, ∆𝑚′3) (green arrows) with the ∆𝑚′3 direction parallel to the line.  

The (∆𝑚′1, ∆𝑚′2) coordinates of 𝐦𝐴 are unique, because the ∆𝑚′1 and ∆𝑚′2 directions are 

perpendicular to the line.  The ∆𝑚′1 direction represents a unique linear combination of 

(∆𝑚1, ∆𝑚2, ∆𝑚3), and since we have some control of the orientation of the ∆𝑚′1 direction 

(which only need be normal to 𝐴𝐵̅̅ ̅̅ ), we have some control over which linear combintion it 

represents.  We can choose an orientation corrresponding to a localized average of 

(∆𝑚1, ∆𝑚2, ∆𝑚3) centered – as best as is possible – on ∆𝑚1, ∆𝑚2 or ∆𝑚3. These three linear 

combinations define the resolution matrx, 𝐑. 

In the linear case, the intersection of the two planes is a straight line, and the same results are 

obtained irrespective of the choice of 𝐦0, because if the ∆𝑚′3 direction is parallel to line for one 

choice of 𝐦0, it is parallel to it for any choice. 

Now, consider the analagous nonlinear case, 𝐠(𝐦) = 𝐝. Taken individually, each datum 

constrains the model parameters to lie on a curved surface (Figure 1C). Taken together, they 

constrain the model parameters to lie on a curve, 𝐴𝐵̅̅ ̅̅ .  The solution is nonunique, becase any 

point, 𝐦𝐴, on the curve satisfies the data.  Globally, the 𝐴𝐵̅̅ ̅̅  curve may have a complicated shape. 

For example, it may be closed or consist of several unconnected sections.  However, as long as 

the curve is locally smooth, we can apply the same analysis procedure as in the linear case.  For a 

point, 𝐦𝐴, on the curve, and for a reference point, 𝐦0, near that point, we can define a local 

(∆𝑚1, ∆𝑚2, ∆𝑚3) and (∆𝑚′1, ∆𝑚′2, ∆𝑚′3) coordinate systems, with the ∆𝑚′3 direction tangent 

to the curve. As before, we can choose an orientation for the ∆𝑚′1 direction corrresponding to a 

localized average of (∆𝑚1, ∆𝑚2, ∆𝑚3) centered – as best as is possible – on ∆𝑚1, ∆𝑚2 or ∆𝑚3. 

These three linear combinations defne the resolution matrix.  However, this matrix is only valid 

for the small region in which curve 𝐴𝐵̅̅ ̅̅  is approximately aligned with the ∆𝑚′3 direction.  For 

this reason, we denote the resolution matrix as, 𝐑𝐴, meaning the local resolution near the point, 

𝐦𝐴.  As in the linear case, the resolution matrix is independent of 𝐦0, as long as 𝐦0 is near 𝐦𝐴.  

If we were to select a new solution, 𝐦𝐴, that is far from the old one, the tangent of 𝐴𝐵̅̅ ̅̅  in its 

vicinity may be arbitrarily different than before.  Consequently, the new resolution matrix will be 

different, too.  Thus, in a nonlinear inverse problem, the resolution matrix, 𝐑𝐴, is a function of 

the solution, 𝐦𝐴. 



Suppose that we solve the nonlinear inverse problem so that its solution is 𝐦𝐴 = 𝐦0 + ∆𝐦.  

This solution is not unique, because it can be moved along the 𝐴𝐵̅̅ ̅̅  curve without changing the 

predicted data.  In contrast, denoting the 𝑖th row of 𝐑0 as 𝐫0
(𝑖)

, the localized average, 𝐚(𝑖) ≡

𝐫0
(𝑖)

𝐦𝐴 = 𝐫0
(𝑖)(𝐦0 + ∆𝐦0) = 𝐫0

(𝑖)
𝐦0 + 𝐫0

(𝑖)
∆𝐦0 is unique, in the sense that small perturbations 

of 𝐦𝐴 along the 𝐴𝐵̅̅ ̅̅  curve leave it unchanged. 

As an example, consider the underdetermined linear problem: 

𝑑1 = 𝑚1 + 𝑚2 

𝑑2 = 𝑚2 + 𝑚3 

By inspection, the linear combination, 𝑚1 − 𝑚 + 𝑚3, is orthogonal to both equations and is 

unresolved.  The averages, r=[½, ½,0], r=[½, ¼, ½] and r=[0, ½, ½] =, are unique, because 

they are linear combinations of the two data equations. Furthermore, they are somewhat 

localized around 𝑚1, 𝑚2 and 𝑚3, respectively. It can easily be verified that 𝐫𝑇[1, −1,1]𝑇 = 0 in 

all three cases.  Thus, a reasonable resolution relationship is: 

𝐦𝑝𝑟𝑒 = 𝐑𝐦 with   𝐑 = [
½ ½ 0
¼ ½ ¼
0 ½ ½

] 

Now consider the following nonlinear equations, which correspond to cylindrical surfaces: 

𝑑1 = [𝑚1
2 + 𝑚2

2]½ 

𝑑2 = [𝑚2
2 + 𝑚3

2]½ 

In the vicinity of 𝐦0 = [1, 1, 1]𝑇, the first equation is approximately: 

𝑑1 = [(1 + ∆𝑚1)2 + (1 + ∆𝑚2)2]½ ≈ [2 + 2∆𝑚1 + 2∆𝑚2]½ ≈ 

[2]½[1 + ∆𝑚1 + ∆𝑚2]½ ≈ [2]½[1 + ½∆𝑚1 + ½∆𝑚2] 

or 

𝑑′1 ≡ [2]½𝑑1 − 2 = ∆𝑚1 + ∆𝑚2 

Similarly, the second equation is approximately: 

𝑑′2 ≡ [2]½𝑑2 − 2 = ∆𝑚2 + ∆𝑚3 

So, near of 𝐦0 = [1, 1, 1]𝑇, the nonlinear equations have the same form as the linear ones, and 

the approximate resolution relationship is: 



∆𝐦𝑝𝑟𝑒 = 𝐑𝑨∆𝐦    with    𝐑𝑨 = [
½ ½ 0
¼ ½ ¼
0 ½ ½

] 

It also follows that: 

𝐦𝑝𝑟𝑒 = 𝐑𝑨𝐦 = 𝐑𝑨(𝐦0 + ∆𝐦) = 𝐑𝑨𝐦0 + 𝐑𝑨∆𝐦 

is unique, because 𝐑𝑨∆𝐦 is unique and 𝐑𝑨𝐦0 is constant. 

The standard Newton method approach for solving a nonlinear problem employs the Taylor 

series approximation: 

∆𝐝(𝑖) ≡ 𝐝 − 𝐠(𝐦(𝑖)) ≈ ∇𝑚𝐠|
𝐦(𝑖)(𝐦 − 𝐦(𝑖)) ≡ 𝐆(𝑖)∆𝐦(𝑖) 

which is solved iteratively as: 

𝐦(0) = 𝐦0 

𝐦(𝑖+1) = 𝐦(𝑖) + 𝐆(𝑖)
−𝑔

[𝐝 − 𝐠(𝐦(𝑖))] 

where 𝐆(𝑖)
−𝑔

 is a generalized inverse based on the linearized data kernel, 𝐆(𝑖). The linearized 

equations, ∆𝐝(𝑖) = 𝐆(𝑖)∆𝐦(𝑖), define 𝑁 planar surfaces that are tangent to the 𝑁 curved surfaces, 

𝐝 = 𝐠(𝐦(𝑖)) the point, 𝐦(𝑖). The intersection of these planes approximates the tangent to the 𝐴𝐵̅̅ ̅̅  

curve, as it was defined above.  Hence, the local resolution matrix, 𝐑(𝑖) = 𝐆(𝑖)
−𝑔

𝐆(𝑖), is the same 

as discussed above (with reference point, 𝐦(𝑖)).  Furthermore, insofar as the sequence of 

approximate solutions, 𝐦(0), 𝐦(1), 𝐦(2), ⋯ are all near one another, one would expect 𝐑(𝑖) to be 

approximately independent of 𝑖. 



 

Figure 1. Space of model parameters. (A) Linear inverse problem. (B) Enlargement of region of 

solution in the linear inverse problem. (C) Nonlinear inverse problem. See text for more 

discussion. 


