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Background 

We model glacial boulders as simple right-cylinders with length, 𝐿, and width (diameter), 𝑊.  The aspect 

ratio is defined as 𝑎 = 𝐿/𝑊.  We consider only elongated boulder, for which 𝑎 ≥ 1.  The aspect ratios of 

a large set of boulders are described by the probability density function, 𝑝(𝑎). 

The critical angle, 𝜃𝑐 , is the tilt at which the bottom edge of the boulder is directly under its center of 

mass.  

𝜃𝑐 = tan−1 (
𝑊

𝐿
) = tan−1(

1

𝑎
) 

The boulder topples over when its tilt exceeds 𝜃𝑐,. 

We are concerned here with the statistics of boulders that are left un-toppled by natural processes.  We 

divide the history of an ensemble of boulders into three stages:  State 1, within the glacial ice; Stage 2, 

immediately after deposition onto the Earth’s rocky surface; and Stage 3, immediately after having 

experienced shaking from an earthquake (Figure 1). 

 

 

Figure 1. Phases of history of glacier boulders. 

Distribution of aspect ratios of boulders within a glacier 

Our idealization accounts for the abrasion of the boulders produced by the natural movement of the 

glacier by assuming that they are close to round (𝑎 ≈ 1). Consequently, we choose a simple probability 

density function (p.d.f) of aspect ratios 1 ≤ 𝑎 < ∞, that is peaked near 𝑎 = 1, and that monotonically 

decreases with aspect ratio: 

𝑝(𝑎) = 𝑐 exp{−𝑐(𝑎 − 1)} 

Here, 𝑐 is the shape parameter or decay constant. The percent of very high aspect boulders decreases with 

𝑐. 

When the boulders are within the glacier, they are being continually rotated by the force of the moving 

ice. Consequently, we assume they are uniformly distributed in angle, 0 ≤ 𝜃 ≤ 90 (measured in degrees 

from vertical), with p.d.f. 



𝑝(𝜃) =
1

90
 

 

The joint p.d.f., 𝑝(𝑎, 𝜃), is the probability function of the simultaneous occurrence of a specific aspect 

ratio of a boulder contained within the glacier, along with a specific orientation.  As the boulder is carried 

along by the glacier, the boulder experiences abrasion from impacts with other boulders, will result in a 

change in aspect ratio. The flow of the ice will have also changed the orientation of the boulder. Though 

they are both results glacier movement, there is no causative relation between each outcome. Therefore, 

the aspect ratio and angle distribution are assumed to be independent of one another, so: 

𝑝(𝑎, 𝜃) = 𝑝(𝑎)𝑝(𝜃) 

While we believe this form of  𝑝(𝑎, 𝜃) is a reasonable approximation, a better one could be determined by 

actual observations of boulders contained within glaciers. 

Glacial deposition modifying distribution of aspect ratios 

As the glacial ice melts, the boulder is deposited on the rocky surface of the Earth, assumed horizontal in 

our scenario. A boulder will only settle into an upright position when a downward pointing vector from 

its center of mass intersects its base.  Otherwise, gravity will cause the boulder to topple. 

The conditional probability of remaining upright after deposition for a specific aspect ratio and angle, 

𝑝(𝑢 = 𝑦|𝑎, 𝜃), can be obtained by comparing the angle of deposition, 𝜃, to the critical angle, 𝜃𝑐  , beyond 

which the boulder topples. We will denote the outcome of deposition as, 𝑢, which can take the values, y 

(meaning “yes”, the boulder remains upright after deposition), and 𝑛 (meaning “no”, the boulder has 

toppled).   

𝑝(𝑢 = 𝑦|𝑎, 𝜃) = {
1 if 𝜃 ≤ 𝜃𝑐

0 if 𝜃 > 𝜃𝑐
 

Bayes formula can be used to determine the posterior probability, 𝑝(𝑎, 𝜃|𝑢 = 𝑦), of aspect ratio and angle 

of deposition, given that the boulder remains upright after deposition (outcome  𝑢 = 𝑦): 

𝑝(𝑎, 𝜃|𝑢 = 𝑦) =
𝑝(𝑢 = 𝑦|𝑎, 𝜃)𝑝(𝑎, 𝜃)

∬ 𝑝(𝑢 = 𝑦|𝑎, 𝜃)𝑝(𝑎, 𝜃)𝑑𝑎𝑑𝜃
 

Here, ∬ 𝑝(𝑢 = 𝑦|𝑎, 𝜃)𝑝(𝑎, 𝜃)𝑑𝑎𝑑𝜃 represents the sum of all the combinations of (𝑎, 𝜃) that lead to the 

outcome u=y.  

The posterior probability, 𝑝(𝑎|𝑢 = 𝑦), of aspect ratio alone is obtained by integrating over angle 

𝑝(𝑎|𝑢 = 𝑦) = ∫ 𝑝(𝑎, 𝜃|𝑢 = 𝑦)𝑑𝜃 

In subsequent sections, we will abbreviate 𝑝(𝑎|𝑢 = 𝑦) as  𝑝𝑑(𝑎) (“d” for “deposition”). The p.d.f., 

 𝑝𝑑(𝑎), describes the distribution of aspect ratios of un-toppled boulders after the deposition process. 

 

 

 



Earthquake shaking modifying distribution of aspect ratios 

Consider an initially upright boulder subject to horizontal acceleration, ℎ (measured as a fraction of 

gravity).  Horizontal acceleration combines with gravity to make an effective tilt, 𝜃𝑔 = tan−1(ℎ). A 

boulder will tip over if  

𝜃𝑔 > 𝜃𝑐     or    tan−1(ℎ) > tan−1(1 𝑎⁄ ) 

Thus, for every horizontal acceleration, ℎ, there is a critical aspect ratio, 𝑎𝑐 

𝑎𝑐 =
1

ℎ
 

In this idealization, a boulder experiencing horizontal acceleration, ℎ, will tip over if is aspect ratio, 𝑎𝑐, 

exceeds 1 ℎ⁄ . Here, outcome is denoted, 𝑣, and can take the values, y (meaning “yes”, the boulder 

remains upright after acceleration), and 𝑛 (meaning “no”, the boulder has toppled).  This untoppled 

outcome is described by the conditional probability of remaining upright after acceleration, 

𝑝(𝑣 = 𝑦|𝑎; ℎ). Here, the semicolon is used to set off deterministic variables from random ones. The 

simplest choice for the conditional p.d.f. is 

𝑝(𝑣 = 𝑦|𝑎; ℎ) = 𝐻(𝑎𝑐 − 𝑎)   with   𝑎𝑐 =
1

ℎ
 

Here, 𝐻(𝑎𝑐 − 𝑎) is the step function, whose value is one when  𝑎 < 𝑎𝑐 and zero when 𝑎 > 𝑎𝑐 . In the real 

world, some boulders with 𝑎 < 𝑎𝑐  topple, and some with 𝑎 > 𝑎𝑐  remain upright. We account for this 

behavior by replacing the step function with the sigmoid function, 𝑓: 

𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠) = 𝑓(𝑎, ℎ, 𝑠) 

with 

𝑓(𝑎, ℎ, 𝑠) =
1

1 + exp (𝑧)
     and    𝑧 = 4𝑠(𝑎 − 𝑎𝑐)   and   𝑎𝑐 =

1

ℎ
 

Here, 𝑠 is the slope of the sigmoid function at the inflection point, 𝑎 = 𝑎𝑐  In the 𝑠 → ∞ limit, the 

sigmoid function tends to the step function. An exemplary sigmoid function is shown (Figure 1).  

 

 

 

Figure 1. Exemplary sigmoid function with 𝑎𝑐 = 2.5 and 𝑠 = 10. 



Bayes formula can be used to determine this the posterior probability, 𝑝(𝑎|𝑣 = 𝑦; ℎ, 𝑠), of aspect ratio, 

given that the boulder remains upright after experiencing horizontal acceleration, ℎ (outcome  𝑣 = 𝑦): 

 

𝑝(𝑎|𝑣 = 𝑦; ℎ, 𝑠) =
𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠) 𝑝𝑑(𝑎)

∫ 𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠)𝑝(𝑎)𝑑𝑎
 

Here,  𝑝𝑑(𝑎) is shorthand for 𝑝(𝑎|𝑢 = 𝑦), as determined in the previous section. We abbreviate 

𝑝(𝑎|𝑣 = 𝑦; ℎ, 𝑠) as  𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠) (“e” for “earthquake”), with 𝑎𝑐 = 1 ℎ⁄ .  

 

Figure 2. P.d.f’s of aspect ratio,  𝑝(𝑎) (blue) 𝑝𝑑(𝑎) (orange),  𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠) (grey). 𝑎𝑐 = 2.5 and 𝑠 = 10  

 

Maximum likelihood estimation of horizontal acceleration  

We address the question of whether  𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠)  helps us understand observations of aspect ratio. 

The observed data are a list of aspect ratios, 𝑎𝑖 with  𝑖 = 1, ⋯ , 𝑁, of untoppled boulders that survived an 

unknown horizontal acceleration, ℎ𝑡𝑟𝑢𝑒.  The maximum of these observed aspect ratios is 𝑎𝑚𝑎𝑥. 

Our first consideration is that 𝑎𝑐  cannot be much smaller than 𝑎𝑚𝑎𝑥, because the probability of an 

observation much larger than 𝑎𝑐 is very small; that is,  𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠) falls off very quickly beyond 𝑎𝑐, 

especially for higher slopes, 𝑠.  Our second consideration is that, for large slopes, 𝑎𝑐  cannot be larger than 

amax as 𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠) transitions very quickly from an extremely high probability of survival to a very low 

(but still non-zero) probability, as 𝑎 increases beyond 𝑎𝑐. These considerations suggest that the 

observations contain information about (𝑎𝑐 , 𝑠). They can help us narrow the range of possible values. 

A numerical estimate of 𝑎𝑐 can be obtained using the maximum likelihood method. Given trial values, 𝑎𝑐 

and 𝑠, the probability of each boulder is 

𝑝𝑖(𝑎𝑐 , 𝑠) =  𝑝𝑒(𝑎𝑖; 𝑎𝑐 , 𝑠) 



The principle of maximum likelihood states that the best estimates of 𝑎𝑐 and 𝑠 are the ones that maximize 

the probability that all observation were observed (for fixed values of the 𝑁 of observations).  For trial 

values (𝑠, 𝑎𝑐), the probability is 

𝑝(𝑠, 𝑎𝑐) = 𝑝1(𝑎𝑐 , 𝑠) × 𝑝2(𝑎𝑐 , 𝑠) × ⋯ × 𝑝𝑁(𝑎𝑐 , 𝑠) 

and its logarithm, called the likelihood function is 

𝐿(𝑠, 𝑎𝑐) = log 𝑝(𝑠, 𝑎𝑐) = log 𝑝1(𝑎𝑐 , 𝑠) + log 𝑝2(𝑎𝑐 , 𝑠) + ⋯ + log 𝑝𝑁(𝑎𝑐, 𝑠) 

The best estimate (𝑎𝑐
𝑒𝑠𝑡 , 𝑠𝑒𝑠𝑡) is the one that maximizes 𝐿(𝑠, 𝑎𝑐). 

Note that the maximization cannot simply assign high probability to every 𝑝𝑖(𝑎𝑐 , 𝑠). The area under 

 𝑝𝑒(𝑎𝑖; 𝑎𝑐 , 𝑠) is fixed at 1, so high probabilities for some aspect ratios must be offset by low values at 

others.  This trading off of probabilities requires 𝑝(𝑠, 𝑎𝑐) to have a maximum at some specific value of 

(𝑎𝑐 , 𝑠).  For instance, although setting 𝑎𝑐 ≫ 𝑎𝑚𝑎𝑥 “widens” and “flattens” 𝑝𝑒(𝑎; 𝑎𝑐 , 𝑠) in the range of the 

data, it does not lead to a maximal 𝑝(𝑠, 𝑎𝑐), because wide p.d.f.’s are necessarily low. 

In practice, we use a grid search to find (𝑎𝑐
𝑒𝑠𝑡 , 𝑠𝑒𝑠𝑡). Many different trial values of s and 𝑎𝑐 are tried and 

the one that maximizes the likelihood of the slope and critical aspect ratio, 𝐿(𝑠, 𝑎𝑐) is identified. It gives 

the best estimate of 𝑎𝑐
𝑒𝑠𝑡 and 𝑠𝑒𝑠𝑡. the estimated horizontal acceleration is ℎ𝑒𝑠𝑡 = 1 𝑎𝑐

𝑒𝑠𝑡⁄ . 

Numerical experiments (Figure 3) demonstrate the viability of the technique.  Under favorable 

circumstance, (𝑎𝑐
𝑒𝑠𝑡 , 𝑠𝑒𝑠𝑡) are close to their true values (𝑎𝑐

𝑡𝑟𝑢𝑒 , 𝑠𝑡𝑟𝑢𝑒). The quality of the estimate is highly 

sensitive to which aspect ratios were observed. 

In Figure 3, the higher likelihoods, 𝐿(𝑠, 𝑎𝑐), occur within a smaller region of the 𝑎𝑐 axis than the 𝑠 axis, 

so the 𝑎𝑐
𝑒𝑠𝑡 has a higher degree of precision than 𝑠𝑒𝑠𝑡. In this case the comparatively narrow range of 

which a high likelihood of 𝑎𝑐 occurs also results in 𝑎𝑐
𝑒𝑠𝑡  possessing a higher accuracy then 𝑠𝑒𝑠𝑡. For the 

specific 𝐿(𝑠, 𝑎𝑐) function in Figure 3, a group of calculated 𝑎𝑐
𝑒𝑠𝑡 (say from a group of repeated 

experiments) will be closer to each other and the 𝑎𝑐
𝑡𝑟𝑢𝑒  then a group of 𝑠𝑒𝑠𝑡 would be to each other and 

𝑠𝑡𝑟𝑢𝑒. Note that the likelihood of a point on the 𝑎𝑐 axis does not exhibit a high variation along the 𝑠 axis. 

The maximum likelihood of 𝐿(𝑠, 𝑎𝑐) is close to parallel with the 𝑠 axis, indicating that 𝑎𝑐
𝑒𝑠𝑡 is not much 

affected by inaccuracies in 𝑠𝑒𝑠𝑡.  

 

Figure 3.  Grid search, showing likelihood function, 𝐿(𝑠, 𝑎𝑐) (colors), (𝑎𝑐
𝑡𝑟𝑢𝑒 , 𝑠𝑡𝑟𝑢𝑒) (black circle) and  

(𝑎𝑐
𝑒𝑠𝑡 , 𝑠𝑒𝑠𝑡) (red circle). 



The accuracy of 𝑠𝑒𝑠𝑡 is high when some of the observed aspect ratios, 𝑎𝑖 are made just beyond 𝑎𝑐
𝑡𝑟𝑢𝑒. 

This is because the slope at the inflection point, 𝑎𝑐 , of  𝑝𝑒(𝑎𝑖; 𝑎𝑐 , 𝑠) is directly related to the slope, 𝑠, of 

the sigmoid function, 𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠), at the inflection point of the sigmoid. Therefore, observations 

collected just preceding and beyond 𝑎𝑐
𝑡𝑟𝑢𝑒, which are approximately on the slope at the inflection point of 

 𝑝𝑒(𝑎𝑖; 𝑎𝑐 , 𝑠) will have a probability that is relatively highly sensitive to the value of 𝑠. A much smaller 

range of 𝑠 values will thereby produce a high 𝑝(𝑠, 𝑎𝑐) for sequences that contain observations just beyond 

𝑎𝑐 compared to sequences that do not contain observations in that range. 

Conclusions 

We have demonstrated in principle that it is possible to estimate the horizontal shaking from the 

observations of the aspect ratio of many boulders. 

Our procedure demonstrates the feasibility of developing a formula for the probability of aspect ratio, 

 𝑝𝑒(𝑎; ℎ, 𝑠), given that the boulder remains upright after experiencing horizontal acceleration, ℎ. This 

p.d.f. depends upon knowledge of the probability of aspect ratios given that they survive untoppled after 

deposition,  𝑝𝑑(𝑎), and the probability of a boulder surviving horizontal shaking, given an aspect ratio, 

𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠). 

We provide a simple model for 𝑝𝑑(𝑎) that is based on ideas about how glacial boulders are modified by 

glacial ice.  However, an empirical p.d.f. based on observations of boulders within the glacier could be 

substituted, were it available. We also provide a simple model for 𝑝(𝑣 = 𝑦|𝑎; ℎ, 𝑠), based on the notion 

that a boulder will topple if the horizontal acceleration of the earthquake results in an effective tilt that 

exceeds a critical value that depends on aspect ratio. 

Given a set of observed aspect rations of untoppled boulders, a standard maximum likelihood procedure 

can be used to determine the parameters, 𝑠 and ℎ. A numerical test in which a grid search was used to find 

the maximum likelihood point produced estimates of these parameters that were acceptably close to their 

true values. 

In or model, aspect ratio is a measure of ‘fragility’, in the sense that boulders with high aspect rations are 

most likely to topple, and hence are the most fragile.  However, our general procedure could be extended 

to other measures of fragility. 

 

 


