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1. Introduction 

Consider a linear differential equation of the form, ℒ(𝑐) 𝑢 = 𝑠, where the field, 𝑢(𝑥, 𝑦, 𝑧, 𝑡), and 

the source, 𝑠(𝑥, 𝑦, 𝑧, 𝑡), depend on position, (𝑥, 𝑦, 𝑧), and time, 𝑡, and where the differential 

operator, ℒ(𝑐), depends on a scalar material parameter, 𝑐.  An example is a wave propagation 

problem, involving pressure, 𝑢, source, 𝑠, background velocity, 𝑣, and heterogeneity, 𝑐𝑓(𝑥, 𝑦, 𝑧) 

ℒ = (𝑣2 + 𝑐𝑓(𝑥, 𝑦, 𝑧))
𝜕2

𝜕𝑡2
− ∇2 

Given time-dependent measurements, 𝑢𝑖
𝑜𝑏𝑠(𝑡) = 𝑢𝑜𝑏𝑠(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖, 𝑡) at 𝑁 observer positions 

(stations), (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), the individual errors are defined as 𝑒𝑖 = 𝑢𝑖
𝑜𝑏𝑠 − 𝑢𝑖, and the total error as 

𝐸 = ∫ ∑ 𝑒𝑖
2

𝑖
 d𝑡 

The term sensitivity kernel means either the partial derivative, 𝜕𝑒𝑖 𝜕𝑐⁄  (the sensitivity of 

individual errors to perturbations in the material parameter) or 𝜕𝐸 𝜕𝑐⁄  (the sensitivity kernel of 

the total error to perturbations in the material parameter), depending on context.  Sensitivity 

kernels can be computed in a variety of ways. 

Both sensitivity kernels depend on the quantity, 𝜕𝑢𝑖 𝜕𝑐⁄  

𝜕𝑒𝑖

𝜕𝑐
=

𝜕

𝜕𝑐
(𝑢𝑖

𝑜𝑏𝑠 − 𝑢𝑖) = −
𝜕𝑢𝑖

𝜕𝑐
 

𝜕𝐸

𝜕𝑐
=

𝜕

𝜕𝑐
∫ ∑ 𝑒𝑖

2 d𝑡

𝑖

= − ∫ ∑ 2𝑒𝑖

𝜕𝑢𝑖

𝜕𝑐
𝑖

 d𝑡 

The following mathematical trick helps to “hide” the stations in the formula for 𝜕𝐸 𝜕𝑐⁄ .  We 

imagine that the error, 𝑒 = 𝑢𝑜𝑏𝑠 − 𝑢 is known everywhere.  Then,  

𝜕𝐸

𝜕𝑐
= − ∫ ∑ 2𝑒𝑖

𝜕𝑢𝑖

𝜕𝑐
𝑖

 d𝑡 = − (2𝑞,
𝜕𝑢

𝜕𝑐
)   with   𝑞 = ∑ 𝑒𝑖 𝛿(𝑥 − 𝑥𝑖)𝛿(𝑦 − 𝑦𝑖)𝛿(𝑧 − 𝑧𝑖)

𝑖

 

Here (. , . ) is the inner product, defined as 

(𝑎, 𝑏) ≡ ∫ ∭ 𝑎 𝑏  d3𝑥  d𝑡 

 

2. Methods of computing 𝜕𝑢 𝜕𝑐⁄  

2.1. Method A.  Finite differences 



Suppose that the differential equation, ℒ(𝑐)𝑢 = 𝑠 is solved twice, once for material parameter, 

𝑐0, leading to solution, 𝑢(𝑐0) and another for 𝑐0 + ∆𝑐, leading to solution, 𝑢(𝑐0 + ∆𝑐). The 

derivative, 𝜕𝑢 𝜕𝑐⁄ , can be approximated as 

𝜕𝑢0

𝜕𝑐
≡

𝜕𝑢

𝜕𝑐
|

𝑐0

≈
𝑢(𝑐0 + ∆𝑐) − 𝑢(𝑐0)

∆𝑐
 

And then 𝜕𝑢𝑖 𝜕𝑐⁄  is just 𝜕𝑢0 𝜕𝑐⁄  evaluated at (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). 

Superficially, this finite difference derivative hides the “interaction” that makes 𝑢(𝑐0 + ∆𝑐) 

different from 𝑢(𝑐0). In a seismic problem, the interaction corresponds to the scattering of the 

wavefield off of the heterogeneity.  However, the interaction can be teased out of this formula by 

substituting 𝑢 = ℒ−1𝑠 

𝜕𝑢0

𝜕𝑐
≈

[ℒ(𝑐0 + ∆𝑐)]−1 − [ℒ(𝑐0)]−1

∆𝑐
𝑠 =

𝜕ℒ−1

𝜕𝑐
|

𝑐0

𝑠 = −ℒ0
−1

𝜕ℒ0

𝜕𝑐
ℒ0

−1𝑠 = −ℒ0
−1

𝜕ℒ0

𝜕𝑐
𝑢0 

Here, we have defined 𝑢0 ≡ 𝑢(𝑐0), ℒ0 ≡ ℒ(𝑐0) and 𝜕ℒ0 𝜕𝑐⁄ ≡ 𝜕ℒ 𝜕𝑐⁄ |𝑐0
 and have used the rule,  

𝜕ℒ−1

𝜕𝑐
= −ℒ−1

𝜕ℒ

𝜕𝑐
ℒ−1 

(which is derived by differentiating ℒℒ−1 = ℐ, where ℐ is the identity operator).  Thus, 𝜕𝑢0 𝜕𝑐⁄  

satisfies a differential equation 

ℒ0

𝜕𝑢0

𝜕𝑐
≈ −

𝜕ℒ0

𝜕𝑐
𝑢0 

the r.h.s. of which is the “virtual source” or the “scattering interaction”. 

2.2 Method B.  Born approximation 

We consider unperturbed and perturbed differential equations: 

ℒ(𝑐0) 𝑢(𝑐0) = 𝑠 

ℒ(𝑐0 + ∆𝑐) 𝑢(𝑐0 + ∆𝑐) = 𝑠 

We expand both ℒ(𝑐0 + ∆𝑐) and 𝑢(𝑐0 + ∆𝑐) in Taylor series 

(ℒ0 +
𝜕ℒ0

𝜕𝑐
∆𝑐)  (𝑢0 +

𝜕𝑢

𝜕𝑐
∆𝑐) = 𝑠 

Multiply out and discard the higher order term 

ℒ0𝑢0 + ℒ0

𝜕𝑢

𝜕𝑐
∆𝑐 +

𝜕ℒ0

𝜕𝑐
∆𝑐𝑢0 = 𝑠 

Subtract the unperturbed equation 



ℒ0

𝜕𝑢

𝜕𝑐
∆𝑐 +

𝜕ℒ0

𝜕𝑐
∆𝑐𝑢0 = 0 

And rearrange, yielding the same formula as before. 

𝜕𝑢0

𝜕𝑐
≡

𝜕𝑢

𝜕𝑐
|

𝑐0

= −ℒ0
−1

𝜕ℒ0

𝜕𝑐
𝑢0 

2.3. Method C, direct differentiation 

We differentiate 

 𝑢(𝑐) = ℒ−1(𝑐)𝑠 

to get 

𝜕𝑢

𝜕𝑐
=

𝜕ℒ−1

𝜕𝑐
𝑠 = −ℒ−1

𝜕ℒ0

𝜕𝑐
ℒ−1𝑠 = −ℒ−1

𝜕ℒ

𝜕𝑐
𝑢 

or 

𝜕𝑢0

𝜕𝑐
= −ℒ0

−1
𝜕ℒ0

𝜕𝑐
𝑢0 

Reassuringly, all three methods give identical results. 

3. Methods of computing 𝜕𝐸 𝜕𝑐⁄  

3.1 Direct methods 

Step A. Compute 𝑢0 everywhere by solving ℒ0𝑢0 = 𝑠, and sample it to get its values at the 

receivers. 

Step B. Compute 𝜕𝑢0 𝜕𝑐⁄  everywhere, either by finite differences or by solving 

 

ℒ0

𝜕𝑢0

𝜕𝑐
≈ −

𝜕ℒ0

𝜕𝑐
𝑢0 

and sample it to get its values at the receivers. 

Step C.  Perform the integrals/summation 

 
𝜕𝐸

𝜕𝑐
= − ∫ ∑ 2𝑒𝑖

𝜕𝑢𝑖

𝜕𝑐
𝑖

 d𝑡 

Irrespective of details, two differential equations must be solved and one integration/summation 

must be performed to compute 𝜕𝐸 𝜕𝑐⁄ . In practice, the heterogeneities are described by many 

(say 𝑀) 𝑐s, so that 2𝑀 solutions and 1𝑀 integrations/summations must be performed. 

 



3.2 Adjoint method 

Step A. Substitute  

𝜕𝑢0

𝜕𝑐
= −ℒ0

−1
𝜕ℒ0

𝜕𝑐
𝑢0     into      

𝜕𝐸

𝜕𝑐
= − (2𝑞,

𝜕𝑢0

𝜕𝑐
)   

to get 

𝜕𝐸0

𝜕𝑐
= (2𝑞, ℒ0

−1
𝜕ℒ0

𝜕𝑐
𝑢0)   

Step B. Use the adjoint method to move  ℒ0
−1 to other side of inner product 

𝜕𝐸0

𝜕𝑐
= (2ℒ0

†−1𝑞,
𝜕ℒ0

𝜕𝑐
𝑢0)   

Here, we have used fact that adjoint of an inverse is the inverse of an adjoint. 

Step C. Now define, 𝜆 ≡ ℒ0
†−1𝑞 so that the “adjoint field” 𝜆 satisfies the adjoint differential 

equation 

ℒ0
†𝜆 ≡ 𝑞 

and solve this equation for 𝜆. 

Step D. Perform the inner product 

𝜕𝐸0

𝜕𝑐
= (2𝜆,

𝜕ℒ0

𝜕𝑐
𝑢0) 

This looks complicated, so why do people do it?  The answer is all the information about the 

heterogeneity is in the 𝜕ℒ0 𝜕𝑐⁄  factor.  Irrespective of the number of heterogeneities, you need 

perform only two solutions of differential equations, one for 𝑢0 and one for 𝜆. You still need to 

perform 𝑀 inner products, one for each distinct 𝜕ℒ0 𝜕𝑐⁄ , but that’s the easy part. 

In summary, the adjoint method provides a method for computing 𝜕𝐸0 𝜕𝑐⁄  than is much more 

computationally efficient than direct methods. 

 


