Comparison of Several Ways to Compute Sensitivity Kernels

Bill Menke, December 16, 2022

1. Introduction

Consider a linear differential equation of the form, $\mathcal{L}(c) u = s$, where the field, u(x, y, z, t), and the source, s(x, y, z, t), depend on position, (x, y, z), and time, t, and where the differential operator, $\mathcal{L}(c)$, depends on a scalar material parameter, c. An example is a wave propagation problem, involving pressure, u, source, s, background velocity, v, and heterogeneity, cf(x, y, z)

$$\mathcal{L} = (v^2 + cf(x, y, z))\frac{\partial^2}{\partial t^2} - \nabla^2$$

Given time-dependent measurements, $u_i^{obs}(t) = u^{obs}(x_i, y_i, z_i, t)$ at N observer positions (stations), (x_i, y_i, z_i) , the individual errors are defined as $e_i = u_i^{obs} - u_i$, and the total error as

$$E = \int \sum_{i} e_i^2 \, \mathrm{d}t$$

The term *sensitivity kernel* means either the partial derivative, $\partial e_i/\partial c$ (the sensitivity of individual errors to perturbations in the material parameter) or $\partial E/\partial c$ (the sensitivity kernel of the total error to perturbations in the material parameter), depending on context. Sensitivity kernels can be computed in a variety of ways.

Both sensitivity kernels depend on the quantity, $\partial u_i/\partial c$

$$\frac{\partial e_i}{\partial c} = \frac{\partial}{\partial c} (u_i^{obs} - u_i) = -\frac{\partial u_i}{\partial c}$$
$$\frac{\partial E}{\partial c} = \frac{\partial}{\partial c} \int \sum_i e_i^2 dt = -\int \sum_i 2e_i \frac{\partial u_i}{\partial c} dt$$

The following mathematical trick helps to "hide" the stations in the formula for $\partial E/\partial c$. We imagine that the error, $e = u^{obs} - u$ is known everywhere. Then,

$$\frac{\partial E}{\partial c} = -\int \sum_{i} 2e_i \frac{\partial u_i}{\partial c} dt = -\left(2q, \frac{\partial u}{\partial c}\right) \text{ with } q = \sum_{i} e_i \,\delta(x - x_i)\delta(y - y_i)\delta(z - z_i)$$

Here (.,.) is the inner product, defined as

$$(a,b) \equiv \int \iiint a \ b \ \mathrm{d}^3 x \ \mathrm{d} t$$

2. Methods of computing $\partial u/\partial c$

2.1. Method A. Finite differences

Suppose that the differential equation, $\mathcal{L}(c)u = s$ is solved twice, once for material parameter, c_0 , leading to solution, $u(c_0)$ and another for $c_0 + \Delta c$, leading to solution, $u(c_0 + \Delta c)$. The derivative, $\partial u/\partial c$, can be approximated as

$$\frac{\partial u_0}{\partial c} \equiv \frac{\partial u}{\partial c}\Big|_{c_0} \approx \frac{u(c_0 + \Delta c) - u(c_0)}{\Delta c}$$

And then $\partial u_i / \partial c$ is just $\partial u_0 / \partial c$ evaluated at (x_i, y_i, z_i) .

Superficially, this finite difference derivative hides the "interaction" that makes $u(c_0 + \Delta c)$ different from $u(c_0)$. In a seismic problem, the interaction corresponds to the scattering of the wavefield off of the heterogeneity. However, the interaction can be teased out of this formula by substituting $u = \mathcal{L}^{-1}s$

$$\frac{\partial u_0}{\partial c} \approx \frac{\left[\mathcal{L}(c_0 + \Delta c)\right]^{-1} - \left[\mathcal{L}(c_0)\right]^{-1}}{\Delta c} s = \frac{\partial \mathcal{L}^{-1}}{\partial c} \bigg|_{c_0} s = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} \mathcal{L}_0^{-1} s = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0$$

Here, we have defined $u_0 \equiv u(c_0)$, $\mathcal{L}_0 \equiv \mathcal{L}(c_0)$ and $\partial \mathcal{L}_0 / \partial c \equiv \partial \mathcal{L} / \partial c |_{c_0}$ and have used the rule,

$$\frac{\partial \mathcal{L}^{-1}}{\partial c} = -\mathcal{L}^{-1} \frac{\partial \mathcal{L}}{\partial c} \mathcal{L}^{-1}$$

(which is derived by differentiating $\mathcal{LL}^{-1} = \mathcal{I}$, where \mathcal{I} is the identity operator). Thus, $\partial u_0 / \partial c$ satisfies a differential equation

$$\mathcal{L}_0 \frac{\partial u_0}{\partial c} \approx -\frac{\partial \mathcal{L}_0}{\partial c} u_0$$

the r.h.s. of which is the "virtual source" or the "scattering interaction".

2.2 Method B. Born approximation

We consider unperturbed and perturbed differential equations:

$$\mathcal{L}(c_0) u(c_0) = s$$
$$\mathcal{L}(c_0 + \Delta c) u(c_0 + \Delta c) = s$$

We expand both $\mathcal{L}(c_0 + \Delta c)$ and $u(c_0 + \Delta c)$ in Taylor series

$$\left(\mathcal{L}_0 + \frac{\partial \mathcal{L}_0}{\partial c} \Delta c\right) \left(u_0 + \frac{\partial u}{\partial c} \Delta c\right) = s$$

Multiply out and discard the higher order term

$$\mathcal{L}_0 u_0 + \mathcal{L}_0 \frac{\partial u}{\partial c} \Delta c + \frac{\partial \mathcal{L}_0}{\partial c} \Delta c u_0 = s$$

Subtract the unperturbed equation

$$\mathcal{L}_0 \frac{\partial u}{\partial c} \Delta c + \frac{\partial \mathcal{L}_0}{\partial c} \Delta c u_0 = 0$$

And rearrange, yielding the same formula as before.

$$\frac{\partial u_0}{\partial c} \equiv \frac{\partial u}{\partial c}\Big|_{c_0} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0$$

2.3. Method C, direct differentiation

We differentiate

$$u(c) = \mathcal{L}^{-1}(c)s$$

to get

$$\frac{\partial u}{\partial c} = \frac{\partial \mathcal{L}^{-1}}{\partial c}s = -\mathcal{L}^{-1}\frac{\partial \mathcal{L}_0}{\partial c}\mathcal{L}^{-1}s = -\mathcal{L}^{-1}\frac{\partial \mathcal{L}}{\partial c}u$$

or

$$\frac{\partial u_0}{\partial c} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0$$

Reassuringly, all three methods give identical results.

3. Methods of computing $\partial E / \partial c$

3.1 Direct methods

Step A. Compute u_0 everywhere by solving $\mathcal{L}_0 u_0 = s$, and sample it to get its values at the receivers.

Step B. Compute $\partial u_0 / \partial c$ everywhere, either by finite differences or by solving

$$\mathcal{L}_0 \frac{\partial u_0}{\partial c} \approx -\frac{\partial \mathcal{L}_0}{\partial c} u_0$$

and sample it to get its values at the receivers.

Step C. Perform the integrals/summation

$$\frac{\partial E}{\partial c} = -\int \sum_{i} 2e_{i} \frac{\partial u_{i}}{\partial c} \, \mathrm{d}t$$

Irrespective of details, two differential equations must be solved and one integration/summation must be performed to compute $\partial E/\partial c$. In practice, the heterogeneities are described by many (say *M*) *c*s, so that 2*M* solutions and 1*M* integrations/summations must be performed.

3.2 Adjoint method

Step A. Substitute

$$\frac{\partial u_0}{\partial c} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0 \quad \text{into} \quad \frac{\partial E}{\partial c} = -\left(2q, \frac{\partial u_0}{\partial c}\right)$$

to get

$$\frac{\partial E_0}{\partial c} = \left(2q, \mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0\right)$$

Step B. Use the adjoint method to move \mathcal{L}_0^{-1} to other side of inner product

$$\frac{\partial E_0}{\partial c} = \left(2\mathcal{L}_0^{\dagger - 1}q, \frac{\partial \mathcal{L}_0}{\partial c}u_0\right)$$

Here, we have used fact that adjoint of an inverse is the inverse of an adjoint.

Step C. Now define, $\lambda \equiv \mathcal{L}_0^{\dagger - 1} q$ so that the "adjoint field" λ satisfies the adjoint differential equation

$$\mathcal{L}_0^{\dagger} \lambda \equiv q$$

and solve this equation for λ .

Step D. Perform the inner product

$$\frac{\partial E_0}{\partial c} = \left(2\lambda, \frac{\partial \mathcal{L}_0}{\partial c}u_0\right)$$

This looks complicated, so why do people do it? The answer is all the information about the heterogeneity is in the $\partial \mathcal{L}_0 / \partial c$ factor. Irrespective of the number of heterogeneities, you need perform only two solutions of differential equations, one for u_0 and one for λ . You still need to perform *M* inner products, one for each distinct $\partial \mathcal{L}_0 / \partial c$, but that's the easy part.

In summary, the adjoint method provides a method for computing $\partial E_0/\partial c$ than is much more computationally efficient than direct methods.