Comparison of Several Ways to Compute Sensitivity Kernels

Bill Menke, December 16, 2022

1. Introduction

Consider a linear differential equation of the form, \(\mathcal{L}(c) u = s \), where the field, \(u(x, y, z, t) \), and the source, \(s(x, y, z, t) \), depend on position, \((x, y, z) \), and time, \(t \), and where the differential operator, \(\mathcal{L}(c) \), depends on a scalar material parameter, \(c \). An example is a wave propagation problem, involving pressure, \(u \), source, \(s \), background velocity, \(v \), and heterogeneity, \(cf(x, y, z) \)

\[
\mathcal{L} = (v^2 + cf(x, y, z)) \frac{\partial^2}{\partial t^2} - \nabla^2
\]

Given time-dependent measurements, \(u_i^{obs}(t) = u^{obs}(x_i, y_i, z_i, t) \) at \(N \) observer positions (stations), \((x_i, y_i, z_i) \), the individual errors are defined as \(e_i = u_i^{obs} - u_i \), and the total error as

\[
E = \int \sum_i e_i^2 \, dt
\]

The term sensitivity kernel means either the partial derivative, \(\partial e_i / \partial c \) (the sensitivity of individual errors to perturbations in the material parameter) or \(\partial E / \partial c \) (the sensitivity kernel of the total error to perturbations in the material parameter), depending on context. Sensitivity kernels can be computed in a variety of ways.

Both sensitivity kernels depend on the quantity, \(\partial u_i / \partial c \)

\[
\frac{\partial e_i}{\partial c} = \frac{\partial}{\partial c} (u_i^{obs} - u_i) = -\frac{\partial u_i}{\partial c}
\]

\[
\frac{\partial E}{\partial c} = \frac{\partial}{\partial c} \int \sum_i e_i^2 \, dt = -\int \sum_i 2e_i \frac{\partial u_i}{\partial c} \, dt
\]

The following mathematical trick helps to “hide” the stations in the formula for \(\partial E / \partial c \). We imagine that the error, \(e = u_i^{obs} - u \) is known everywhere. Then,

\[
\frac{\partial E}{\partial c} = -\int \sum_i 2e_i \frac{\partial u_i}{\partial c} \, dt = -\left(2q, \frac{\partial u}{\partial c}\right) \text{ with } q = \sum_i e_i \delta(x - x_i)\delta(y - y_i)\delta(z - z_i)
\]

Here \((.,.\)\) is the inner product, defined as

\[
(a, b) \equiv \int \int \int a \, b \, d^3x \, dt
\]

2. Methods of computing \(\partial u / \partial c \)

2.1. Method A. Finite differences
Suppose that the differential equation, \(\mathcal{L}(c)u = s \) is solved twice, once for material parameter, \(c_0 \), leading to solution, \(u(c_0) \) and another for \(c_0 + \Delta c \), leading to solution, \(u(c_0 + \Delta c) \). The derivative, \(\partial u / \partial c \), can be approximated as

\[
\frac{\partial u_0}{\partial c} \equiv \left. \frac{\partial u}{\partial c} \right|_{c_0} \approx \frac{u(c_0 + \Delta c) - u(c_0)}{\Delta c}
\]

And then \(\partial u_i / \partial c \) is just \(\partial u_0 / \partial c \) evaluated at \((x_i, y_i, z_i)\).

Superficially, this finite difference derivative hides the “interaction” that makes \(u(c_0 + \Delta c) \) different from \(u(c_0) \). In a seismic problem, the interaction corresponds to the scattering of the wavefield off of the heterogeneity. However, the interaction can be teased out of this formula by substituting \(u = \mathcal{L}^{-1}s \)

\[
\frac{\partial u_0}{\partial c} \approx \frac{[\mathcal{L}(c_0 + \Delta c)]^{-1} - [\mathcal{L}(c_0)]^{-1}}{\Delta c} = \left. \frac{\partial \mathcal{L}^{-1}}{\partial c} \right|_{c_0} s = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} \mathcal{L}_0^{-1} s = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0
\]

Here, we have defined \(u_0 \equiv u(c_0) \), \(\mathcal{L}_0 \equiv \mathcal{L}(c_0) \) and \(\partial \mathcal{L}_0 / \partial c \equiv \partial \mathcal{L} / \partial c |_{c_0} \) and have used the rule,

\[
\frac{\partial \mathcal{L}^{-1}}{\partial c} = -\mathcal{L}^{-1} \frac{\partial \mathcal{L}}{\partial c} \mathcal{L}^{-1}
\]

(which is derived by differentiating \(\mathcal{L} \mathcal{L}^{-1} = \mathcal{I} \), where \(\mathcal{I} \) is the identity operator). Thus, \(\partial u_0 / \partial c \) satisfies a differential equation

\[
\frac{\partial \mathcal{L}_0}{\partial c} u_0 \approx -\frac{\partial \mathcal{L}_0}{\partial c} u_0
\]

the r.h.s. of which is the “virtual source” or the “scattering interaction”.

2.2 Method B. Born approximation

We consider unperturbed and perturbed differential equations:

\[
\mathcal{L}(c_0) u(c_0) = s \\
\mathcal{L}(c_0 + \Delta c) u(c_0 + \Delta c) = s
\]

We expand both \(\mathcal{L}(c_0 + \Delta c) \) and \(u(c_0 + \Delta c) \) in Taylor series

\[
\left(\mathcal{L}_0 + \frac{\partial \mathcal{L}_0}{\partial c} \Delta c \right) \left(u_0 + \frac{\partial u}{\partial c} \Delta c \right) = s
\]

Multiply out and discard the higher order term

\[
\mathcal{L}_0 u_0 + \mathcal{L}_0 \frac{\partial u}{\partial c} \Delta c + \frac{\partial \mathcal{L}_0}{\partial c} \Delta c u_0 = s
\]

Subtract the unperturbed equation
\[
\mathcal{L}_0 \frac{\partial u}{\partial c} \Delta c + \frac{\partial \mathcal{L}_0}{\partial c} \Delta u_0 = 0
\]

And rearrange, yielding the same formula as before.

\[
\frac{\partial u_0}{\partial c} \equiv \frac{\partial u}{\partial c} \bigg|_{c_0} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0
\]

2.3. Method C, direct differentiation

We differentiate

\[u(c) = \mathcal{L}^{-1}(c)s \]

to get

\[\frac{\partial u}{\partial c} = \frac{\partial \mathcal{L}^{-1}}{\partial c} s = -\mathcal{L}^{-1} \frac{\partial \mathcal{L}_0}{\partial c} \mathcal{L}^{-1} s = -\mathcal{L}^{-1} \frac{\partial \mathcal{L}}{\partial c} u \]

or

\[\frac{\partial u_0}{\partial c} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0 \]

Reassuringly, all three methods give identical results.

3. Methods of computing \(\partial E / \partial c \)

3.1 Direct methods

Step A. Compute \(u_0 \) everywhere by solving \(\mathcal{L}_0 u_0 = s \), and sample it to get its values at the receivers.

Step B. Compute \(\partial u_0 / \partial c \) everywhere, either by finite differences or by solving

\[\mathcal{L}_0 \frac{\partial u_0}{\partial c} \approx -\frac{\partial \mathcal{L}_0}{\partial c} u_0 \]

and sample it to get its values at the receivers.

Step C. Perform the integrals/summation

\[\frac{\partial E}{\partial c} = -\int \sum_i 2e_i \frac{\partial u_i}{\partial c} \, dt \]

Irrespective of details, two differential equations must be solved and one integration/summation must be performed to compute \(\partial E / \partial c \). In practice, the heterogeneities are described by many (say \(M \)) \(c \)s, so that \(2M \) solutions and \(1M \) integrations/summations must be performed.
3.2 Adjoint method

Step A. Substitute

\[\frac{\partial u_0}{\partial c} = -\mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0 \]

into

\[\frac{\partial E}{\partial c} = -\left(2q, \frac{\partial u_0}{\partial c} \right) \]

to get

\[\frac{\partial E_0}{\partial c} = \left(2q, \mathcal{L}_0^{-1} \frac{\partial \mathcal{L}_0}{\partial c} u_0 \right) \]

Step B. Use the adjoint method to move \(\mathcal{L}_0^{-1} \) to other side of inner product

\[\frac{\partial E_0}{\partial c} = \left(2\mathcal{L}_0^+ q, \frac{\partial \mathcal{L}_0}{\partial c} u_0 \right) \]

Here, we have used fact that adjoint of an inverse is the inverse of an adjoint.

Step C. Now define, \(\lambda \equiv \mathcal{L}_0^+ q \) so that the “adjoint field” \(\lambda \) satisfies the adjoint differential equation

\[\mathcal{L}_0^+ \lambda \equiv q \]

and solve this equation for \(\lambda \).

Step D. Perform the inner product

\[\frac{\partial E_0}{\partial c} = \left(2\lambda, \frac{\partial \mathcal{L}_0}{\partial c} u_0 \right) \]

This looks complicated, so why do people do it? The answer is all the information about the heterogeneity is in the \(\partial \mathcal{L}_0 / \partial c \) factor. Irrespective of the number of heterogeneities, you need perform only two solutions of differential equations, one for \(u_0 \) and one for \(\lambda \). You still need to perform \(M \) inner products, one for each distinct \(\partial \mathcal{L}_0 / \partial c \), but that’s the easy part.

In summary, the adjoint method provides a method for computing \(\partial E_0 / \partial c \) than is much more computationally efficient than direct methods.