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1. Introduction

Consider a linear differential equation of the form, L(c) u = s, where the field, u(x, y, z, t), and
the source, s(x,y, z, t), depend on position, (x,y, z), and time, t, and where the differential
operator, L(c), depends on a scalar material parameter, c. An example is a wave propagation
problem, involving pressure, u, source, s, background velocity, v, and heterogeneity, cf (x,y, z)
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Given time-dependent measurements, u?S(t) = u®?S(x;, y;, z;, t) at N observer positions
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(stations), (x;, ¥, z;), the individual errors are defined as e; = u;”® — u;, and the total error as
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The term sensitivity kernel means either the partial derivative, de;/dc (the sensitivity of
individual errors to perturbations in the material parameter) or dE /dc (the sensitivity kernel of
the total error to perturbations in the material parameter), depending on context. Sensitivity
kernels can be computed in a variety of ways.

Both sensitivity kernels depend on the quantity, du;/dc
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The following mathematical trick helps to “hide” the stations in the formula for 0E /dc. We
imagine that the error, e = u°?S — u is known everywhere. Then,
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Here (.,.) is the inner product, defined as
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2. Methods of computing du/dc
2.1. Method A. Finite differences



Suppose that the differential equation, L(c)u = s is solved twice, once for material parameter,
Co, leading to solution, u(cy) and another for ¢, + Ac, leading to solution, u(c, + Ac). The
derivative, du/dc, can be approximated as
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And then du;/dc is just duy/dc evaluated at (x;, y;, z;).

Superficially, this finite difference derivative hides the “interaction” that makes u(c, + Ac)
different from u(c,). In a seismic problem, the interaction corresponds to the scattering of the
wavefield off of the heterogeneity. However, the interaction can be teased out of this formula by
substituting u = L™ 1s
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Here, we have defined uy = u(c), Lo = L(cp) and dLy/dc = dL/dc|., and have used the rule,
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(which is derived by differentiating LL™1 = J, where 7 is the identity operator). Thus, du,/dc
satisfies a differential equation
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the r.h.s. of which is the “virtual source” or the “scattering interaction”.
2.2 Method B. Born approximation
We consider unperturbed and perturbed differential equations:
L(co) u(co) =s
L(coy+Ac)u(cy+Ac) =s
We expand both L(cy + Ac) and u(cy + Ac) in Taylor series
(LO + %Ac) (uo + a—uAc) =5
dc dc
Multiply out and discard the higher order term
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Subtract the unperturbed equation
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And rearrange, yielding the same formula as before.
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2.3. Method C, direct differentiation

We differentiate
u(c) = L71(c)s
to get
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or
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Reassuringly, all three methods give identical results.
3. Methods of computing dE /dc
3.1 Direct methods

Step A. Compute u, everywhere by solving Lyu, = s, and sample it to get its values at the
receivers.

Step B. Compute du,/dc everywhere, either by finite differences or by solving
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and sample it to get its values at the receivers.

Step C. Perform the integrals/summation
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Irrespective of details, two differential equations must be solved and one integration/summation
must be performed to compute dE /dc. In practice, the heterogeneities are described by many
(say M) cs, so that 2M solutions and 1M integrations/summations must be performed.



3.2 Adjoint method
Step A. Substitute
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to get
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Step B. Use the adjoint method to move L5 to other side of inner product
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Here, we have used fact that adjoint of an inverse is the inverse of an adjoint.

Step C. Now define, A = Lg ~14 so that the “adjoint field” A satisfies the adjoint differential
equation

Lir=q
and solve this equation for A.

Step D. Perform the inner product
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This looks complicated, so why do people do it? The answer is all the information about the
heterogeneity is in the 0L, /dc factor. Irrespective of the number of heterogeneities, you need
perform only two solutions of differential equations, one for u, and one for A. You still need to
perform M inner products, one for each distinct L, /dc, but that’s the easy part.

In summary, the adjoint method provides a method for computing dE,/dc than is much more
computationally efficient than direct methods.



