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Continental Tectonics

Homework 2:
Due Wednesday



Relative Frequency of Rock Types

   A. Crust    B. Surface
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Magma chemistry
Two main classes

mafic magmas + rocks
ma - fic  

magnesium + iron (Ferrous) rich
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felsic magmas + rocks
fel - sic

Feldspar and silica rich

OR:
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   felsic   ->intermediate-> mafic

light dark

large ions small ions
(K, Na) (Mg, Fe)

more Si (>60%) less Si (≤ 50%)
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   felsic   ->intermediate-> mafic

light dark

large cations small cations
(K, Na) (Mg, Fe)

more Si (>60%) less Si (≤ 50%)

cooler magmas hotter magmas

dense mineralslight minerals

which more explosive?  minerals?
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Quartz
KSpar
PlagSpar
Micas
Amph.
Pyroxene
Olivine

Felsic Intermediate Mafic
Ultra-
mafic
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Quartz
KSpar
PlagSpar
Micas
Amph.
Pyroxene
Olivine

Felsic Intermediate Mafic
Ultra-
mafic

Granite Gabbro Perid-
otite

Diorite
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Granite Diorite Gabbro

felsic mafic
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Felsic Intermediate Mafic

Granite GabbroDiorite

co
ar

se

Rhyolite BasaltAndesite

fi
ne

rock slides



Mafic Igneous Rocks

Gabbro (coarse) Basalt (fine)



Intermediate Igneous Rocks

Diorite (coarse) Andesite (fine)



Granite (coarse) Rhyolite (fine)

Felsic Igneous Rocks



Classifying igneous rocks by
composition and texture
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Ridges:  
Mantle undergoes decompression melting
  --->>> Basalts  (dry)

basalt = mantle melt ("blood of the Earth")

1300°C
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Depth

All Solid

All
LiqPartial

Melting

Mantle Melting 
1100 °C

Temperature
1300°C

Lower
Pressure!!
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water -->  mantle wedge, 
-->   basalt arc volcanism...



ES101-Lect9

T

Wet 
melting

1100˚C800˚C

you 
are 
here

H2O  -- Lowers Melting Point

Depth
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basaltic
magma

Olivine Olivine+
Pyroxene
+ Ca-f'spar

andesitic
magma

cooling

basaltic melts -> andesite melts
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Mt. St. Helens

basalt
magma

Crust

Mantle

wet
felsic
magma

H2O

H2O
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Volcanic/Extrusive Rocks
cool fast, fine-grained
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magma also cools under ground......
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Plutonic/Intrusive Rocks
cool slowly, coarse-grained
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1) Relative ages

Geochronology Outline:

2. Absolute Radiometric Ages



Geologic Time

How do we determine age in the geological record?

Principles of Geochronology

Go out to the field.  Observations yield relative age. 



Chapter 12:  Deep Time:  How Old Is Old?             Earth: Portrait of a Planet, 3rd edition, by Stephen Marshak

Relative AgesRelative Ages
 Logical tools are useful for defining relative age.Logical tools are useful for defining relative age.

 Principle of Principle of uniformitarianismuniformitarianism..
 Principle of superposition.Principle of superposition.
 Principle of original horizontality.Principle of original horizontality.
 Principle of original continuity.Principle of original continuity.
 Principle of cross-cutting relationships.Principle of cross-cutting relationships.
 Principle of inclusions.Principle of inclusions.
 Principle of baked contacts.Principle of baked contacts.
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Geologic TimeGeologic Time
 Uniformitarianism Uniformitarianism –– The present is key to the past. The present is key to the past.

 Physical processes that we observe today operated in thePhysical processes that we observe today operated in the
same way in the geological past.same way in the geological past.

 Modern processes help us understand ancient events inModern processes help us understand ancient events in
the rock record.      the rock record.      



Law of Superposition

Each layer of rock is older than
the layer above it and younger
than the rock layer below it.

Nicolaus Steno, a Danish anatomist, geologist, and priest (1636 - 1686)
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Relative AgeRelative Age
 Horizontality and continuity.Horizontality and continuity.

 Strata often form laterally extensive horizontal sheets.Strata often form laterally extensive horizontal sheets.
 Subsequent erosion dissects once-continuous layers.Subsequent erosion dissects once-continuous layers.
 Flat-lying rock layers are unlikely to have been disturbed.Flat-lying rock layers are unlikely to have been disturbed.



Law of Cross-cutting Relationships

A fault or dike that cuts through
another body of rock must be
younger than the rock it cuts

Scotsman James Hutton (1726-1797)



Law of Inclusions

If a rock body (Rock B) contains
fragments of another rock body (Rock
A), it must be younger than the
fragments of rock it contains.

James Hutton
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Relative AgeRelative Age
 Baked contacts.Baked contacts.

 Thermal metamorphism occurs when country rock isThermal metamorphism occurs when country rock is
invaded by a plutonic igneous intrusion.invaded by a plutonic igneous intrusion.

 The baked rock must have been there first (it is older).The baked rock must have been there first (it is older).



Law of Faunal Successions

Fossils in rock layers appeared in a
predictable sequence, within a discrete
period of time.

William Smith
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UnconformitiesUnconformities
 An unconformity is a time gap in the rock record.An unconformity is a time gap in the rock record.

 NondepositionNondeposition..
 Erosion.Erosion.



Chapter 12:  Deep Time:  How Old Is Old?             Earth: Portrait of a Planet, 3rd edition, by Stephen Marshak

Relative AgeRelative Age
 Determining Determining relativerelative ages empowers geologists to ages empowers geologists to

easily unravel complicated geologic histories.easily unravel complicated geologic histories.



Images of Siccar point outcrop from
http://www.wwnorton.com/college/geo/
earth2/content/index/animations.asp

James Hutton (1726-1797)

“... we find no vestige of 
a beginning,–no prospect 
of an end.”

http://www.wwnorton.com/college/geo/earth2/content/index/animations.asp
http://www.wwnorton.com/college/geo/earth2/content/index/animations.asp
http://www.wwnorton.com/college/geo/earth2/content/index/animations.asp
http://www.wwnorton.com/college/geo/earth2/content/index/animations.asp


Winchester, S., 2001, The map that 
changed the world:  William Smith and the 
birth of modern geology, HarperCollins.
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Copyright © 2006 International Commission on Stratigraphy

     Subdivisions of the global geologic record are 
formally defined by their lower boundary.  Each unit
of the Phanerozoic (~542 Ma to Present) and the
base of Ediacaran are defined by a basal Global
Standard Section and Point (GSSP       ), whereas
Precambrian units are formally subdivided by
absolute age (Global Standard Stratigraphic Age,
GSSA).  Details of each GSSP are posted on the
ICS  website (www.stratigraphy.org).
     International chronostratigraphic units, rank,
names and formal status are approved by the
International Commission on Stratigraphy (ICS)
and ratified by the International Union of Geological
Sciences (IUGS).
     Numerical ages of the unit boundaries in the
Phanerozoic are subject to revision. Some stages
within the Ordovician and Cambrian will be formally
named upon international agreement on their GSSP
limits. Most sub-Series boundaries (e.g., Middle
and Upper Aptian) are not formally defined.
     Colors are according to the Commission for the
Geological Map of the World (www.cgmw.org). 
     The listed numerical ages are from 'A Geologic
Time Scale 2004', by F.M. Gradstein, J.G. Ogg,
A.G. Smith, et al. (2004; Cambridge University Press).

This chart was drafted by Gabi Ogg. Intra Cambrian unit ages
with * are informal, and awaiting ratified definitions.




