Assumption. Each datum d_i is drawn from a different Normal p.d.f., $p(d_i)$. These p.d.f.’s are uncorrelated, have distinct (and known) variances, s_i^2, but the same (and unknown) mean, m.

Estimate of the mean and its variance. The model equation is based on the statement that each datum equals the mean, $d_i=m$, with each row of weighted by its certainty, s_i^{-1}:

$$Fm = f \quad \text{or} \quad \begin{bmatrix} s_1^{-1} \\ \vdots \\ s_N^{-1} \end{bmatrix} m = \begin{bmatrix} s_1^{-1}d_1 \\ \vdots \\ s_N^{-1}d_N \end{bmatrix}$$

Note that this equation is normalized, in the sense that the covariance $C_f = I$. Both the generalized least-squares method and the maximum likelihood method lead to the same equation for m^{est}, namely:

$$F^TFm^{est} = F^Tf$$

$$\begin{bmatrix} s_1^{-1} & \cdots & s_N^{-1} \\ \vdots & \ddots & \vdots \\ s_N^{-1} & \cdots & s_N^{-1} \end{bmatrix} m^{est} = \begin{bmatrix} s_1^{-1} \\ \vdots \\ s_N^{-1} \end{bmatrix} \begin{bmatrix} s_1^{-1}d_1 \\ \vdots \\ s_N^{-1}d_N \end{bmatrix}$$

This equation has solution

$$m^{est} = [F^TF]^{-1}F^Tf \quad \text{or} \quad m^{est} = \left(\sum_{i=1}^{N} s_i^{-2} \right)^{-1} \sum_{i=1}^{N} s_i^{-2} d_i$$

Note that the estimated mean is a linear function of the data, with the form $m^{est} = Mf$, with $M = [F^TF]^{-1}F^T$. By the standard rule of error propagation, variance of m^{est} is:
\[\text{var}(m^{est}) = MC_fM^T = \]

\[\{[F^TF]^{-1}F^T\}C_f\{[F^TF]^{-1}F^T\}^T = [F^TF]^{-1} = \left(\sum_{i=1}^{N} s_i^{-2} \right)^{-1} \]

(since \(C_f = I \)).

If all the variances are equal, \(s_i = s \), and these equations reduces to:

\[m^{est} = \left(\sum_{i=1}^{N} s^{-2} \right)^{-1} \sum_{i=1}^{N} s^{-2} d_i \approx N^{-1} \sum_{i=1}^{N} d_i \]

\[\text{var}(m^{est}) = \left(\sum_{i=1}^{N} s^{-2} \right)^{-1} \approx \frac{s^2}{N} \]

which are the usual formulas for the estimated mean and its variance.

If one datum, say \(d_k \), has a variance that is much smaller than all the others, then:

\[m^{est} = \left(s_k^{-2} + \sum_{i \neq k} s_i^{-2} \right)^{-1} \left(s_k^{-2} d_k + \sum_{i \neq k} s_i^{-2} d_i \right) \approx d_k \]

\[\text{var}(m^{est}) = \left(s_k^{-2} + \sum_{i \neq k} s_i^{-2} \right)^{-1} \approx s_k^2 \]

That is, only the most certain datum counts.