Rule-based Programming in FLEX

written by R. Shapiro
18 July 1986

Table of Contents

1. Introduction
2. Rule packets

2.1 Forward—chaining packets
2.1.1 Expansion of forward-chaining packets
2.2 Backward—-chaining packets and domains
2.2.1 Properties of packet variables
2.3 Defining a rule packet
2.3.1 Rule packet description clauses
2.3.2 Rule packet definition examples
2.4 Defining a domain
2.4.1 Domain definition examples

3. Rules

3.1 Types of rules
3.1.1 Basic rules
3.1.2 Antecedent rules
3.1.3 One-shot rules
3.2 Defining a rule
3.2.1 Rule description clauses
3.2.2 Rule definition examples
3.3 Uncertainty
3.3.1 Uncertain values and sets
3.3.2 Expressions involving uncertainty

4. History and tracing

4.1 Tracing
4.2 History

OOV b N =

(S
[y

Pt et b ek bt pet bk
[BN IS " B S B A B

—
=2}

- -
0

1. Introduction

This document describes the use of the rule—based programming system FLEX. It is
presumed that the reader is familiar with the notion of rule—-based programming.
Knowledge of some such system (e.g.,, LOOPS or MYCIN) is useful as well. Working

knowledge of Lisp—Machine Lisp (or at least some Lisp dialect) is essential.

2. Rule packets

Rules defined in FLEX are organized into rule-packets, following the LOOPS model of
rule-based programming. A rule packet is a description which consists of a set of
rules, a set of local variables, and a list of arguments. Certain varieties of rule
packets (see 2.2) also contain a list of other packets (celled sub—packets). The rules
of a given packet can reference any of the local variables or arguments of the packet
which owns them (as well as the variables of packets of which the owning packet is a

sub-packet).

The rule packet itself is just a description. It is not something which can be invoked
in any sense. Rather, it is used to create instances of itself, which can be invoked.
What it means to invoke a rule packet instance is determined by the type of the
defining packet. In general, a packet instance can be thought of as a context with

state (i.e., local variables) which will run the rules which it contains.

The two basic varieties of rule packets are forward-chaining packets and backward-

chaining packets, described in the two following sections.

2.1 Forward—-chaining packets
The instances of a forward—chaining rule packet are invoked as though they were
functions. That is, the name associated with an instance defines a function (or a

method) which, when called, will try the rules which the defining rule packet contains.

There are four types of forward—chaining packets which try the rules in different

ways.

DO-1, An instance of a DO—1 packet will run the rules in succession until
one fires.

DO-ALL An instance of a DO-—all packet will run each rule in succession.

WHILE-1 An instance of a WHILE-1 packet runs a double-iteration of the

rules as follows. The inner loop is equivalent toc do-1 (i.e., stops
when a rule fires or when all the rules have been tried, whichever
comes first). The outer loop runs as long as the while clause
associated with the packet (see 2.3.1) is true and the packet

instance has not been explicitly stopped by one of the rules (a
special function is provided for this explicit stopping).

WHILE-ALL This is like while—1, except that the inner loop is like do-all instead
of do—1 (i.e., try each rule).

An instance of a rule packet returns multiple values as follows. The first value is
NIL if no rule fired, non-NIL if any rule fired. The other values are the principal

values (see 3.3) of the local variables of the packet (in their definition order).

2.1.1 Expansion of forward—chaining packets

An instance of a forward—chaining rule packet is equivalent to a dynamically
constructed function. If, at some point, the rules and variables of the defining packet
are considered fixed, then the instances can be converted from dynamic functions into
their static equivalents, using the now fixed state of the packet. This process is
called expansion. Such expanded functions can then be compiled, yielding highly
efficient forms of forward chaining. FLEX provides several functions for performing this

expansion and compilation.

(compile—packets! packet-list &optional expand-only)
This function will expand (end compile as well, unless expand—only is
non-nil) the packets which are elements of packet-list. This
function is useful when a list of packet instance names already
exists. Such a list is $expansion—packets which, after loading a file
containing packet definitions, will contain all of the packet instance
names defined by that file,

(compile-packets &rest packet—names)

This is a macro which will compile the expanded form of the named
packets.

(expand-packets &rest packet—names)
This is a macro which will expand the named packets.

(write—expanded—packets packet-list path)
This function will write into the file named by the path argument the
expanded form of the packets which are elements of packet-list.

2.2 Backward—chaining packets and domains

Backward-chaining packets are used in the manner of MYCIN. That is, a hierarchy
of packets is defined whose purpose is to infer values for special variables (called goal
variables). The packet at the top of this hierarchy is called a domain. Packets are
instantiated as needed, and values for variables are set either by querying the user
or by running rules whose action is to set the variable in question. A single
instantiation of a domain, and all of the subsequent instantiations of its subpackets
and the resulting values of variables, is called a session. Calling the domain as a
function starts a session —— the resulting instance hierarchy is returned as the

result. At the end of a session the values of the domain’'s goals variables are printed.

2.2.1 Properties of packet variables

Local variables of backward-chaining rule packets need various properties so that
any user-—interaction concerning them (e.g., asking the user for a value) can go
smoothly. The form for setting properties is as follows:

(defrulevar <packet-name> <symbol|-name>
§ <property-name> <property-value> }s)

The properties which are useful are:

:prompt Value should be a string or a list whose elements are the arguments
to the function format. Format will be called with these arguments
if the user is asked to supply a value for this variable.

‘type This specifies the type of value that the variable is allowed to take.
The legal values for this property are symbol if there is a discrete
set of symbolic values that the variable may take on, string if the
variable can taeke as a value an arbitrary string, or number if the
variable must take on numeric values. If the variable is to be set—
valued (see 3.3.1), then the type name should be prefixed by set-—
of-, e.g. set—of—symbol or set—of-numeric. These last are called
set—types.

:choices If the variable has type symbol, then this property gives the list of
legal symbolic values. The form of the property—value is a list of two
element lists, one per legal choice. The two element lists for each
choice consist of the symbol which is the possible value and the
string which a user may type to indicate that value. This is a list
similar in construction to the list of choices passed to the fquery
function.

:list-choices Value should be t or nil. If the user is asked to supply a value for
this variable, and it has a discrete set of permissible values

(specified with the :choices property, above), the value of this
property determines whether or not the list of permissible values will
be displayed.

‘trans ‘ Value is either a string, or a list whose members are the arguments
to a call to format. The string will be printed or format called with
the list of arguments at the end of a session. Typically this is used
to print the value of a goal variable.

:never—ask Value should be t or nil (default is nil). If the value is t, the user
will never be asked to supply a value for this variable.

:ask~first Value should be t or nil (default is nil, except for lab—data variables
for which it is t). If the value is t, this variable will be asked for
before any attempt is made to use the rules to infer a value.

2.3 Defining a rule packet
A rule packet definition looks like this:

(defrule—packet <packet-naome> <argument-list>
§ <rule—description-clause> }s¢ ‘
§ <rule—definition> }s)

where

<packet—-name> The name to be used for this packet. This is either a symbol, or a
method function-spec (i.e., a list whose car is a flavor name and
whose cadr is a message name). The latter form is only relevant for
forward-chaining packets. See 2.1 for an explanation of the use of
packet names.

<argument-list> A list of symbols which will be arguments to instances of this packet.
Only relevant for forward—chaining packets. Each element of this list
is either a symbol or a pair of symbols. In the latter case, the first
element of the pair is the argument and the second is its type.

<rule—description—-clause>

A symbol or list which sets some property of this packet. See
2.3.1 for a list of legal clauses.

<rule—definition> .A rule definition (see 3.2). The packet—name argument should be
left out, however. The packet being defined will be used instead.

2.3.1 Rule packet description clauses

Rule packets have various properties which may be set by providing description
clauses in the definition. Eech property has an associated keyword, and may also take
arguments. The general form of a description clause is a list whose car is the relevant

keyword and whose cdr is a list of arguments. In the case that a property takes no

arguments, the description clause is a list just containing the relevant keyword; in
this case the keyword itself may be used as the clause (i.e., the symbol instead of a

list containing the symbol).

The defined keywords and their arguments are as follows:

‘type One argument, a symbol. One of backward (see 2.2), do-1, do-—all,
while—1, while—all (see 2.1 for the last 4). If no type clause is
present, do—1 is the assumed type.

:rules The arguments are an initial set of rules for this packet. As with
rule—description—clauses, these are rule definitions without a packet
name.

:documentation One argument, a string, which is stored with the packet as
descriptive information.

:properties The argument should be an association list where, for each element,
the CAR is the property and the CADR is the value. Two predefined
properties are :PRE—CONDITION (the value is a predicate which must
evalute to true for the packet to run) and :BASIS (the value is a
string useful for documentating the reasoning which the packet is
intended to perform).

:locals Arguments are the local variables that instances of this packet will
have. Each element of this list is either a symbol or a pair of
symbols. In the latter case, the first element of the pair is the local
and the second is its type. The values of the locals will be returned
as a result of running the packet) in the order in which they appear
in this clause.

:make—instances Arguments are names for instances to be made of this packet. This is
only relevant for forward-cheining packets. If a forward-chaining
packet definition does not contain one of these clauses, then a new
name is generated for the packet, and the name supplied as the
packet name is used instead as the name of an instance.

:while Argument is an arbitrary Lisp expression, used by a while-~1 or
while—all packet to terminate iteration.

:instantiate—ask~—first
Argument is a string, suitable for passing to yes—-or-no-~p. The first
time this packet is instantiated in a given context, this is the
prompt that will be used. Any subsequent instantiations will use the
:instantiate—ask—-rest string. Both of these are only relevant for
backward—chaining packets.

:instantiate—ask—-rest
See :instantiate—ask—tirst, above.

:instantiate~when This is wused in conjunction with :instantiate—ask-first and
‘instantiate—ask—rest, as follows. If the argument is the symbol
:once—only, then the packet will be instantiated once without any

'————"_—_’N

interaction with the user. If the argument is the symbol :ask, then
instantiation will be controlled through interaction with the user
(using the prompts defined by the instantiate—ask properties). If the
argument is a list whose car is :ask-if, then the cadr of the
argument is evaluated. If this value is non-nil, then the
instantiation will be controlled through interaction with the user,
using the questions defined by the instantiate—ask properties.
Otherwise, the argument is a Lisp form which is evaluated to
determine instantiation (i.e., do it if the value is non-—nil).

:lab—date . Arguments are local variables for the packet. This differs from :local
only in that lab—data local variables will never be inferred (i.e., they
must be given values through interaction with the user). Only
relevant for backward—chaining packets.

:sub-packets Arguments are names of packets which are sub-packets of the
packet being defined. These should have been defined already. Only
relevant for backward-—chaining packets.

:super—packets Arguments are packets that this packet will be a sub-packet of.
These should be already defined. Only relevant for backward-
chaining packets.

:domains Same as super—packets, except that the containing packet should be
defined as a domain.

2.3.2 Rule packet definition examples

(defrule—packet fore (x y)
(:locals a b)
(:make—instances fore!l fore2))

This is an example of a do-1 forward rule packet (since no :type clause was present,
the default was used). It takes two arguments x and y. It has two local variables, a
and b. Two instances of this packet have been made, forel and fore2. Each is now a
function with two arguments (though the execution of the functions isn’'t meaningful
until some rules are defined for the packet fore).

(defrule~packet fore—while (x y)
(:type while-all)
{:locals a b)
{:while (neq x b))
(:rules
’ (.
(:conditions (eq y a))
) (:actions (setq a "y" b 0)))

This is a while—all packet, with arguments x and y, and local variables a and b. The

while clause, which controls the looping through the rules, is the form (neq x b).

Also, a rule (with no name) has been defined for this packet —— if y is eq to a, the
rule will fire and the packet will return T, "y" and 0. Note that no instances were
explicitly asked for. Therefore a new packet name is generated, and fore-—while
becomes the name of an instance.

(defrule-packet marriage ()
(:type backward)
(:1ab~data partner)
(:locals cost deduction)
(:domains tax—domain)
(:instontiate~when
(:ask-if (eq filing—status ':single)))
(:instantiote~ask-first
"Could a marriage be considered? ")
(:instantiate—ask-rest
“Could any other marriages be considered? "))

This is an example of a backward packet. It has a lab—data variable partner, two
local variables cost and deduction. It is a sub-packet of the domain tax—domain (see
2.4.1). During a tax—domain session, this packet will be instantiated if filing—status
equals single (filing—status is a lab-data variable of the domain) and if the user
answers the instantiate question "yes"”. The first time an instance might be made, the

:instantiate—ask—first question is used. Once one has been made, the :instantiate-

ask—rest question will be used.

2.4 Defining a domain

A domain is a special type of backward—-chaining rule packet. It has its own defining

form, as follows:

(defdomain <domain—name>
§ <domain-description-clouse> }¢)

where

<domain—-name> A name for this domain. Should be a symbol.
<domain—-description—clause>
A clause defining properties of this domain. See below.
A domeain description clause is one of the following:

(:goals § <var> }*)
The arguments will be goal variables of the domain.

(:locals § <var> }*)
The arguments will be local variables of the domain. See the
decsription of local variables of backward-chaining rule packets,
above.

(:lab-data § <var> }*)
The arguments will be lab—data variables of the domain. See the
description of lab—data variables of backward-chaining rule packets,
above.

2.4.1 Domain definition examples
(defdomain tax—domain
(:lab-dota filing-status)
(:goals action-list))

(defrulevar tax—domain filing-status
prompt "What is your filing stotus? "
type symbol
choices ((single "single") (married "married"))
list-choices t)

(defrulevar tax-domain action—|ist
trans
("~2%Action~P to reduce tax liability:~§'%E6X~Ani"
(1- (length action—list)) action-list))
This defines a domain called tax—domain with one lab—data variable (i.e., a variable
which the user will give a value before any inference takes place) filing—status, and

one goal variable action-list. A given tax—domain session thus is an effort to use

rules to infer a value for action-list.

The variable filing—status then has some properties set, in particular the prompt for
asking the user for & value, the type of the value and the legal values for this
variable (since the type was symbol). Since list—choices is t, the set of legal values
will be print\ed with the prompt when the user is asked. The set of legal values is
expressed as a list of two—element lists. Each sub-list corresponds to one legal value.
The first element of a sub-list is the value returned if the second element is typed in

(typically, but not always, these two are the same).

The goal variable action-—list has the trams property set. This property expresses
how the value of action-list will be printed at the end of a session. The list is passed

as arguments to format to do the printing.

10

(defdomain soybeans
(:goals diagnosis)
(:locals
t ime-of—-occurence
precipitation
canker—lesion-color))

Another simple example of a domain.

11

3. Rules

3.1 Types of rules
There are three types of rules: basic, antecedent, and one-shot. The behavior of a

rule and its invocation are determined by the type.

3.1.1 Basic rules

Ae basic rule (the default type) is invoked by the packet of which it is a member. It
fires if its condition part is satisfied. For a rule which does not use uncertainty,
satisfaction simply means that all of the rule's condition forms evaluate to non-nil
values. Rules that use uncertainty have more complicated satisfaction requirements

(see 3.3 for an explanation).

3.1.2 Antecedent rules

Antecedent rules are a special sort of rule that should only be members of
backward—chaining rule packets (see 2.2). An antecedent rule has the same behavior
as a basic rule. However, it is not directly invoked by the owning rule packet. Instead
it is invoked anytime some other (non—antecedent) rule of the owning packet (or of
some sub-packet of the owning packet) fires. Similarly, if a packet variable of the
owning packet (or of some sub-packet of the owning packet) is set through

interaction with a user, the antecedent rules are invoked.

3.1.3 One-shot rules
One-shot rules are invoked by the owning packet, as with basic rules. Once it

fires, however, it will not fire again (in fact, the conditions will not even be looked at)

until it has been reset.

12

3.2 Defining a rule
A rule definition looks like this:

(defrule <rule—name> <rule—packet-name>
§ <description—clause> }e
{ <condition-list> }»
(:actions § <action—form> }e))

where

<rule—name> A name to use for this rule (or * to have the system generate a
name). Should be a symbol.

<rule—packet—name>
The name of the packet that this rule is to be a member of. Should
be a symbol.

<description-clause>

A symbol or a Lisp form which states some property of this rule (see
3.2.1 for details).

<condition-list> A set of conditions which must be satisfied for this rule to fire. A
condition-list takes the following form:

(<condition—-coefficient> § <condition—-form> {s)

where

<condition-coefficient>

One of: :conditions, :sufficient—conditions,
:confirming—conditions, or :condition—-coefficient. In
the last case the first condition-form is the
coefficient and should be a number between 0 and
1. See 3.3 for explanations of these values.

<condition—form>is a Lisp expression. See 3.3.2 for some special
expressions that might appear here in the case
that uncertainty is being used for this rule.

<action—-form> A Lisp expression which is evaluated if the rule fires. See 3.3.2 for
details on the sorts of forms which should appear here in the case
that uncertainty is being used for this rule.

3.2.1 Rule description clauses

Rules have various properties which may be set by providing rule description clauses
in the rule definition. Each property has an associated keyword, and may also take
arguments. The general form of a rule description clause is a list whose car is the
relevant keyword and whose cdr is a list of arguments. In the case that a property

takes no arguments, the description clause is a list just containing the relevant

13

keyword; in this case the keyword itself may be used as the clause (i.e., the symbol

instead of a list containing the symbol).

The defined keywords and their arguments are as follows:

‘type

:use—uncertainty

:strength

:documentation

:updated—vars

One argument, a symbol, which is the name of the type of this rule.
The possible values here are antecedent, one—shot, or basic. If no
type clause appears in a rule definition, the rule is assumed to be
basic. See 3.1 for descriptions of the different types of rules.

One argument which states whether or not this rule should use
uncertainty (see 3.3). If this clause is not provided, the rule will not
use uncertainty.

One argument, a number, which is the strength of the action part of
the rule. This is only relevant for rules which use uncertainty. See
3.3.

One argument, a string, which is stored as descriptive information
for the rule.

Arguments are the variables updated by this rule, i.e., any variable
which would be modified if this rule fires. This is only relevant for

rules which are members of backward-chaining rule packets (see
2.2).

3.2.2 Rule definition examples

(defrule fore-rule—x fore
(eq x a) -> (setq b “x"))

This is a rule of the fore packet (see 2.3.2). This rule does not use uncertainty.

Therefore it will fire if x, an argument of the packet, is eq to a, a local variable of

the packet.

(defrule D1 soybeans

(:updated-vars diagnosis)

(:use~uncertainty T)

(:sufficient-conditions
#[time—of—occurence = faugust .. septemberi]
#lprecipitation >= normal])

(:confirming~conditions
#[canker~lasion-color = brown])

(:actions

#ldiagnosis <— "Dioporthe stem canker"]))

This is a rule of the soybeans domain. If it fires, it will modify the value of diagnosis

(a goal variable of the domain —— see 2.4.1). It is a rule which uses uncertainty. There

are three conditions, two of which have a high valued coefficient (that is, they are

"sufficient”), and one of which has a lower valued coefficient (it is “confirmatory", but

14

not sufficient). The form of the condition clauses is the selector. See 3.3.2. Note that

{ and }{ are not meta—symbols but are literally part of the rule.

3.3 Uncertainty
FLEX has the ability to deal with uncertain values and inferences. The mechanism
which is used is derived from <reference to Michalski here>. In brief, it works as

follows.

Every packet variable which has a value also has a measure of the certainty of that
value. There are two ways in which this certainty measure can be set, depending on
which of the two ways were used to get the value. If the user was asked for the value,
then s/he also would be asked to provide the certainty. If the value was inferred,
then the certainty is derived from a function of three arguments: the certainty of the
assignment (3.3.2 explains how this is expressed); the certainty of the condition part
of the rule whose action part is doing the assignment; and the strength of the rule

(set by the :strength property of the rule).

The certainty of the condition part of a rule is derived from a function of the
certainty of each clause modified by the condition coefficient associated with the
clause (this coefficient is set in the rule definition through the condition-list
construct —- :conditions have the highest possible coefficient (i.e., 1.0), :sufficient-
conditions have a relatively high coefficient, :confirming-conditions have a
significantly lower coefficient; other coefficients can be specified with the :condition-
coefficient form). The certainty of a clause, in turn, is determined in part by the
certainty of any variables in the clause, and in part by the function which the
evaluation of the clause invokes. See 3.3.2 for details about the construction of

uncertain condition clauses.

The certainty of the condition part of a rule also constrains the firing of the rule.
Rather than firing if all condition clauses are true, as a rule which does not use
uncertainty would, a rule which uses uncertainty fires if the certainty of the condition

part is greater than some threshold.

15

3.3.1 Uncertain values and sets

If a value for a variable is not certain, then the variable may in fact have several
distinct possible values, each with its own certainty measure. Such a variable is said
to be multi-valued. Anytime such a multi-valued variable is mentioned in a selector
(see 3.3.2), all possible values are tried (i.e., an implicit or of the possible values). If
the variable is mentioned in some context other than a selector, the most certain
value will be used (this is referred to as the principal value of the variablel” When a
variable is uncertainly assigned a value, this value and its certainty are added to the
list of values so far; if the value is already a possible value, the two certainty

measures are combined.

If a variable can simultaneously have more than one value (as distinct from several
possible but mutually exclusive values, as described above) then the variable is said to
be set—valued. That is, it has one value which is a set of value/certainty pairs. When
such a variable is used in a selector, all of its values must be satisfied (i.e., an
implicit end of the set of values). When a set—valued variable is uncertainly assigned a
value, this value and its certainty are added to the set; if the value is already a
member of the set, the two certainties are combined. Set-valued variables can't
meaningfully be used in contexts other than selectors. They can be used in domains

which don’'t use uncertainty.

Any variable whose type is a set—type is set—valued; all other variables are multi—

valued.

3.3.2 Expressions involving uncertainty
The basic form for building expressions which use uncertainty is the selector. A

selector is a function which applies a relational operator to a variable and each of

the elements of some subset of the domain of the variable. The most general form of a

selector is:
#[<variable> <relation> <sub-domain>]

In this and other examples in this section, the symbols [,], §{ and } are literals of the

16

rule (not meta—-symbols as they are elsewhere in this document). The return value of
a selector is (essentially) a function of the certainty of the value of <variable> and

the weight (i.e., a relative significance measure) of the value of <variable>.

There are two classes of selector, depending on whether the <sub-domain> argument

is nil or not. If it is not nil, then the arguments should be interpreted as follows:

<variable> A symbol.

<relation> A predicate of two arguments (typically something like =, >, <=
etc.).

<sub-domain> A construct which specifies a set of possible values for <variable>

and perhaps measures of significance (called weights) for each of
those possibilities. The selector will work by applying <relation> to
<variable> and each of the possible values specified by <sub-
domain>, returning the maximum weight.

The form of this argument is one of the following:

o a simple value or a range of values; these are called
unweighted values. A range is written:

§<lower-bound> .. <upper—bound>}
o a list of of unweighted values.

o an unweighted value with a weight; these are called
weighted values. A weighted value is written:

<unweighted—value>@<weight>
o a list of weighted values.
Some examples:
Unweighted values:

#[temperature >= normal]

#[time-of-occurence = fmay .. augusti]

The first of these applies >= to the value of temperature and normal. The second
applies = to time-—of-occurence and the range May through August.

List of weighted values:

#lprecipitation = §normalee.?

above-normal@1.0
below-normal00.3}]

In this example, the value of the selector will be a functioh of the certainty of

17

precipitation and the weight as selected by the value of precipitation, i.e., 0.7 if the

value = normal, 1.0 if the value = above—normal, and 0.3 if the value = below—normal.

If the <sub-domain> argument is nil, the the <relation> arguments is interpreted
differently. It is considered to be a weight function, i.e. a function of one argument
(the variable from the selector) which returns a weight.

(defun soybean-YR1 (years)
(cond ((>= years 3)
1.9)
((eq years 2)
0.8)
(t
0.2)))
#[years—crop—repeated soybean-YR1]
The selector will be evaluated by calling soybean—YR1 with years—crop—repeated as an
argument. The value of the selector will be a function of the weight returned by

soybean—YR1 and the certainty of the current velue of years—crop-repeated. This

selector may also be written as:

#[soybean-YR1(years—crop—repeated)]

which emphasizes its functional nature.

A selector may also be used to uncertainly assign a value as follows:

#[<variable> <~ <value>]

where <value> can be weighted. The meaning of this kind of assignment depends on

whether the variable is multi—valued or set—valued. See 3.3.1 for details.

Uncertain forms can be built up recursively with the following functions:

(] &rest disjuncts)

where disjuncts are each wuncertain forms. This is an uncertain
R version of the or function.

(& &rest conjuncts)

where conjuncts are each uncertain forms.This is an uncertain
version of the and function.

(=> if-part the-part)
where if-part and then-part are uncertain forms. This is an
uncertain implication function.

18

4. History and tracing

FLEX provides an ability to trace packet instances and rules as they run, as well as
an ability to examine the history of packet instance and rule invocation after a run.
This chapter describes these two facilities. It should be noted that, in the current
implementation, forward—chaining packet instances which have been expanded can no

longer be traced and will no longer appear in history trees.

4.1 Tracing

If a rule is traced, then the following information will be printed (usually to

standard—output) anytime that rule is invoked:

o When the rule is entered, its name will be printed.

o As each condition clause is evaluated, the clause and its value are printed
(as well as the certainty factor).

o Finally, if the rule fires, each action clause is printed and the ultimate
value of the rule is printed. If the rule doesn't fire, this fact is printed.
Certainty information is printed as well.

If a packet instance is traced, then all of its rules are automatically traced. Also,

the following is printed anytime the packet instance is invoked:

o When the packet instance is entered, its neme, its arguments and their
values, and its local variables and their values are printed. Values are
printed with certainty measures.

o When the packet instance is exited, the resulting value is printed.

If a packet is traced, then all instances of this packet (hence all rules of the

packet) are automatically traced.

The functions which turn tracing on and off are:

(rule-packet-trace &rest packets)

This macro will cause all of the named packets or packet instances

to be traced. If no packets are specified, then all defined packets
are traced.

(rule—packet—untrace &rest packets)

This macro will turn off tracing for all of the named packets. If none
are given, then all defined packets will have tracing turned off.

19

(rule-trace &rest rules)
This macro will turn on tracing for all of the named rules, or all
defined rules if none are specified.

(rule—untrace &rest rules)
This macro will turn off tracing for all of the named rules, or all
defined rules if none are specified.

(tracing—packet form &optional path)
This macro assumes that form is an invocation of a packet instance.
It will turn on tracing of that packet instance, evaluate the
invocation, then turn the tracing off. If path is supplied, the trace
output will go to the file which it names rather than to standard-
output.

(with—-trace—file path form &rest packets)
This macro will trace the packets specified by packets, evaluate
form, then untrace the packets. The trace output will go to the file
named by path.

The variable $rule—output—stream can be used to send trace information somewhere
other than standard—output, simply by setting it to some other stream. With—trace-

file and tracing—packet use this functionality.

4.2 History
The same general information which is printed via tracing is also stored for later
examination. The function history does this examination.
(history &rest pockets)
The latest history for each of the given packet instances is printed. If no packets are

given, then the history of the most recently invoked packet instance is printed.

