This document is being published in electronic format only (Web and CD). Any corrections or additions will be posted to the Web site (www.srs.fs.usda.gov/pubs).

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture Forest Service or the University of Tennessee of any product or service to the exclusion of others that may be suitable. Statements by contributors from outside the U.S. Department of Agriculture Forest Service or the University of Tennessee may not necessarily reflect the policy of the Department or the University.

All articles were received in digital format and were edited for uniform type and style; each author is responsible for the accuracy and content of his or her own paper. Statements of contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department.

Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife—if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers.

April 2007
Southern Research Station
200 W.T. Weaver Blvd.
Asheville, NC 28804
Proceedings
15th Central Hardwood Forest Conference

Proceedings of a Conference held at the University of Tennessee, Knoxville, TN February 27 – March 1, 2006

Edited by:
David S. Buckley
Wayne K. Clatterbuck

Sponsored by:
University of Tennessee, Department of Forestry, Wildlife and Fisheries, Knoxville, TN, and U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville, NC

Program Committee:
David S. Buckley
Stacy L. Clark
Wayne K. Clatterbuck
Callie J. Schweitzer

Published by:
U.S. Department of Agriculture Forest Service
Southern Research Station
Asheville, NC
FOREWORD
The Central Hardwood Forest Conference is a series of biennial meetings that have been hosted by universities and research stations of the U.S. Department of Agriculture Forest Service in the central hardwood forest region in the Eastern United States. The objective of the conference is to bring together forest managers and scientists to discuss research and issues concerning the ecology and management of forests in the central hardwood region. This, the 15th Conference, included presentations pertaining to forest health and protection; ecology and forest dynamics; natural and artificial regeneration; forest products; wildlife; site classification; management and forest resources; mensuration and models; soil and water; agroforestry; and fire. The conference consisted of 86 oral presentations and 30 poster presentations resulting in the papers and abstracts published here.

STEERING COMMITTEE
David S. Buckley University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Stacy L. Clark USDA Forest Service, Southern Research Station, Normal, AL
Wayne K. Clatterbuck University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Callie J. Schweitzer USDA Forest Service, Southern Research Station, Normal, AL

CONCURRENT SESSION LEADERS
David Buckley University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Daniel Cassidy University of Georgia, Athens, GA
Stacy Clark USDA Forest Service, Southern Research Station, Normal, AL
Wayne Clatterbuck University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Jennifer Franklin University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Sam Jackson University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
Karen Kuers University of the South, Forestry and Geology Dept., Sewanee, TN
Chris Oswalt University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN
David Mercker University of Tennessee, Forestry, Wildlife and Fisheries, Jackson, TN
Callie Schweitzer USDA Forest Service, Southern Research Station, Normal, AL
Jeff Stringer University of Kentucky, Department of Forestry, Lexington, KY
Adam Taylor University of Tennessee, Forestry, Wildlife and Fisheries, Knoxville, TN

The Steering Committee of the 15th Central Hardwood Forest Conference wishes to thank Carol Whitlock and other members of the USDA Forest Service Southern Research Station communications unit for technical editing and publishing of these proceedings.

David S. Buckley coordinated the peer review process and Wayne K. Clatterbuck coordinated the meeting facilities and the registration.
REVIEW PROCEDURES

Manuscripts for oral presentations were assigned to one of the editors and peer-reviewed by at least two professionals unless otherwise indicated. Reviews were returned to authors to revise their manuscripts. Revised manuscripts were then submitted to the Southern Research Station, Forest Service U.S. Department of Agriculture for final editing and publishing. Authors are responsible for the accuracy and content of their papers.

Mary A. Arthur, David S. Buckley, Stacy L. Clark, Wayne K. Clatterbuck, Luben Dimov, Jordan M. Marshall, Christopher M. Oswalt, Callie J. Schweitzer, and Jeffrey W. Stringer comprised the conference review team and provided reviews of abstracts and multiple manuscripts.

The Steering Committee is grateful to the following professionals for providing peer reviews of manuscripts for the proceedings:

Mary Beth Adams Burnell Fischer William B. Kurtz Ronald A. Rathfon
Scott Bowe Ross Fitzugh David R. Larsen Stephen R. Shifley
Don C. Bragg W. Mark Ford Andrew J. Lister Robert L. Smith
Brian K. Brashaw Jennifer A. Franklin Brian R. Lockhart Martin A. Spetich
Patrick H. Brose Lee E. Frelich Robert P. Long Philip Steele
Quang V. Cao Emile S. Gardiner William Luppold Ron Stephens
Daniel Cassidy Kurt W. Gottschalk William MacDonald Matthew A. Struckhoff
Neil Clark Peter Gould Brian C. McCarthy Daniel K. Struve
Dean W. Coble Arthur E. Gover W. Henry McNab Daniel J. Twedt
Mark Cowell Bill Healy Gary W. Miller Daniel R. Unger
David R. Coyle Eric Heitzman Randall S. Morin J.W. Van Sambeek
Michael Currier John D. Hodges Charles P. Nicholson Siqun Wang
Jeffrey O. Dawson Shelby G. Jones David Ostermeier Christopher R. Webster
Kenneth G. Day John Kabrick George R. Parker Jake F. Weltzin
Michael Demchik Richard Keim James B. Pickens Harry V. Wiant, Jr.
Pamela J. Edwards Karen Kuers KaDonna Randolph James Zaczek
Andrew Ezell

The 15th Central Hardwood Forest Conference logo and website were developed by Jordan M. Marshall.

The Steering Committee thanks the following people for their contribution to the 15th Central Hardwood Forest Conference: Jordan M. Marshall (Web site), Brien Ostby and Chris Oswalt (logistics), and Mirian Wright (registration and budget), all with the Department of Forestry, Wildlife and Fisheries, at the University of Tennessee. Their work was essential to our effort.
CONTENTS

PLENARY PAPERS ...1

The Resilience of Upland-Oak Forest Canopy Trees to Chronic and Acute Precipitation Manipulations ...3
 Paul J. Hanson, Timothy J. Tschaplinski, Stan D. Wullschleger, Donald E. Todd, Jr., and Robert M. Augé

Carbon Dioxide Fluxes in a Central Hardwoods Oak-Hickory Forest Ecosystem ..13
 Stephen G. Pallardy, Lianhong Gu, Paul J. Hanson, Tilden P. Myers, Stan D. Wullschleger, Bai Yang, Jeffery S. Riggs, Kevin P. Hosman, and Mark Heuer

MENSURATION AND MODELS ...21

The Sine Method as a More Accurate Height Predictor for Hardwoods ..23
 Don C. Bragg

A Diameter Distribution Approach to Estimating Average Stand Dominant Height in Appalachian Hardwoods ..33
 John R. Brooks

Development of Interim Oak Assessment Guidelines for the SILVAH Decision-Support System 37
 Patrick H. Brose

Digital Photo Monitoring for Tree Crown Foliage Change Evaluation ..46
 Neil Clark and Sang-Mook Lee

Stocking Equations for Regeneration in Mixed Oak Stands ...55
 Songlin Fei, Kim C. Steiner, and James C. Finley

A Form of Two-Phase Sampling Utilizing Regression Analysis ...60
 Michael A. Fiery and John R. Brooks

Evaluation of LANDSAT Imagery for Detecting Ice Storm Damage in Upland Forests of Eastern Kentucky ..69
 W. Henry McNab, Tracy Roof, Jeffrey F. Lewis, and David L. Loftis

Mesavage and Girard Form Class Taper Functions Derived from Profile Equations77
 Thomas G. Matney and Emily B. Schultz

Predicting the Cover-Up of Dead Branches Using a Simple Single Regressor Equation86
 Christopher M. Oswalt, Wayne K. Clatterbuck, and E.C. Burkhardt

SOIL AND WATER ..95

Long-Term Stream Chemistry Monitoring on the Fernow Experimental Forest: Implications for Sustainable Management of Hardwood Forests ...97
 Mary Beth Adams and James N. Kochenderfer

Ecosystem Restoration Treatments Affect Soil Physical and Chemical Properties in Appalachian Mixed Oak Forests ..107
 Ralph E.J. Boerner, Jennifer A. Brinkman, and Daniel A. Yaussy
Reclamation of Skid Roads with Fiber Mats and Native Vegetation: Effects on Erosion

Impact of Alternative Harvesting Technologies on Thinning Entry and Optimal Rotation Age for Eastern Hardwoods
Chris B. LeDoux

Nitrogen Dynamics Post-Harvest: The Role of Woody Residues
Kathryn Piatek

Biomass Removal and Its Effect on Productivity of an Artificially Regenerated Forest Stand in the Missouri Ozarks
Felix Ponder, Jr.

Attributes of Down Woody Materials in Hardwood Forests of the Eastern United States
Christopher W. Woodall, Sonja N. Oswalt, and Randall S. Morin

FOREST HEALTH AND PROTECTION

Impact of the Hemlock Woolly Adelgid on Radial Growth of Eastern Hemlock in Pennsylvania
Donald D. Davis, Matthew S. Fromm, and Matthew D. Davis

Testing the Efficacy of Triclopyr and Imazapyr Using Two Application Methods for Controlling Tree-Of-Heaven Along a West Virginia Highway
William E. Eck and David W. McGill

Abundance of Armillaria within Old-Growth Eastern Hemlock Stands in South-Central Pennsylvania
Matthew. S. Fromm and Donald D. Davis

Rotation Length Based on a Time Series Analysis of Timber Degrade Caused by Oak Borers
Richard P. Guyette, Rose-Marie Muzika, and Aaron Stevenson

Red Oak Decline and Mortality by Ecological Land Type in the Missouri Ozarks
John M. Kabrick, Zhaofei Fan, and Stephen R. Shifley

Herbicide Treatments for Controlling Invasive Bush Honeysuckle in a Mature Hardwood Forest in West-Central Indiana
Ron Rathfon and Keith Ruble

Cottonwood Leaf Beetle Control with Imidacloprid Soaked Cuttings
Terry L. Robison and Randall J. Rousseau

Down Deadwood Dynamics on a Severely Impacted Oak Decline Site
Martin A. Spetich

Defoliation and Oak Mortality in Southern New England
Jeffrey S. Ward

FIRE

Survival of Striped Maple Following Spring Prescribed Fires in Pennsylvania
Patrick H. Brose, Gary W. Miller, and Kurt W. Gottschalk
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuels Consumption and Nitrogen Loss Following Prescribed Fire: A Comparison of Prescription Types in the Southern Appalachians</td>
<td>231</td>
</tr>
<tr>
<td>Barton D. Clinton and James M. Vose</td>
<td></td>
</tr>
<tr>
<td>Initial Effects of Prescribed Burning and Thinning on Plant Communities in the Southeast Missouri Ozarks</td>
<td>241</td>
</tr>
<tr>
<td>E.R. McMurry, Rose-Marie Muzika, E.F. Loewenstein, K.W. Grabner, and G.W. Hartman</td>
<td></td>
</tr>
<tr>
<td>Effects of Landscape Position and Season of Burn on Fire Temperature in Southern Ohio's Mixed Oak Forests</td>
<td>250</td>
</tr>
<tr>
<td>Doug J. Schwemlein and Roger A. Williams</td>
<td></td>
</tr>
<tr>
<td>Forest Fuels and Landscape-Level Fire Risk Assessment of the Ozark Highlands, Missouri</td>
<td>258</td>
</tr>
<tr>
<td>Michael C. Stambaugh, Richard P. Guyette, and Daniel C. Dey</td>
<td></td>
</tr>
<tr>
<td>MANAGEMENT AND FOREST RESOURCES</td>
<td>267</td>
</tr>
<tr>
<td>The Impact of Thinning and Fertilization Treatments on Sugar Concentration, Volume, and Total Sugar of Silver Maple Sap</td>
<td>269</td>
</tr>
<tr>
<td>M.L. Crum, J.J. Zaczek, J.E. Preece, S.G. Baer, and J.K. Buchheit</td>
<td></td>
</tr>
<tr>
<td>Alternative Silvicultural Practices in Appalachian Forest Ecosystems: Implications for Species Diversity, Ecosystem Resilience, and Commercial Timber Production</td>
<td>276</td>
</tr>
<tr>
<td>Forest Certification and Nonindustrial Private Forest Landowners: Who Will Consider Certifying and Why?</td>
<td>281</td>
</tr>
<tr>
<td>David C. Mercker and Donald G. Hodges</td>
<td></td>
</tr>
<tr>
<td>The Importance and Distribution of Hickory Across Virginia</td>
<td>286</td>
</tr>
<tr>
<td>Anita K. Rose and James F. Rosson, Jr.</td>
<td></td>
</tr>
<tr>
<td>The Past, Present, and Future of Indiana's Oak Forests</td>
<td>295</td>
</tr>
<tr>
<td>Stephen R. Shifley and Christopher W. Woodall</td>
<td></td>
</tr>
<tr>
<td>SITE CLASSIFICATION</td>
<td>305</td>
</tr>
<tr>
<td>Ecosystem Classification and Succession in the Central Till Plain of Indiana</td>
<td>307</td>
</tr>
<tr>
<td>Benjamin J. Dolan and George R. Parker</td>
<td></td>
</tr>
<tr>
<td>Forest Conservation in the Cumberland Plateau and Mountains: Assessing Distribution and Structure of Landform Forest Associations</td>
<td>317</td>
</tr>
<tr>
<td>Daniel L. Druckenbrod, Virginia H. Dale, and Lisa M. Olsen</td>
<td></td>
</tr>
<tr>
<td>Influence of Landform and Soil Characteristics on Canopy and Ground-Flora Composition and Structure of First- and Second-Order Headwater Riparian Forests in Unglaciated Ohio</td>
<td>325</td>
</tr>
<tr>
<td>Kathryn L. Holmes, P. Charles Goebel, and David M. Hix</td>
<td></td>
</tr>
<tr>
<td>A Multi-Criteria GIS Analysis for Ranking Potential Restoration Areas in the Fragmented Kaskaskia River Watershed Bottomland Hardwood Forest</td>
<td>337</td>
</tr>
<tr>
<td>Jean C. Mangun, Michael D. Gaskins, Andrew D. Carver, Karl W.J. Williard, and James J. Zaczek</td>
<td></td>
</tr>
<tr>
<td>Aborted Yellow-Poplar Geographic Seed Source Test Serves to Verify Productivity on Cumberland Plateau Undulating Sandstone Uplands: 42-Year Results</td>
<td>345</td>
</tr>
<tr>
<td>Glendon W. Smalley and Elliot D. Olgivie</td>
<td></td>
</tr>
</tbody>
</table>
WILDLIFE.. 353

A Method of Quantifying Forest Vertical Structure for the Purpose of Evaluating Bat Habitat 355
 Marne M. Avina, Roger A. Williams, and Stanley D. Gehrt

Developing Management Guidelines for Cerulean Warbler Breeding Habitat 364
 Paul B. Hamel and Kenneth V. Rosenberg

Ruffed Grouse (Bonasa Umbellus) Use of Stands Harvested Via Alternative Regeneration Methods in the Southern Appalachians .. 375
 Benjamin C. Jones and Craig A. Harper

Effects of Long-Term Prescribed Fire on Small Mammal Population Dynamics and Movement in an Oak Barrens Community in Tennessee – Preliminary Results 383
 Rebecca L. Stratton and Wayne K. Clatterbuck

Forest Management to Improve Breeding Habitat for Priority Songbirds in Upland Oak-Hickory Forests .. 388
 Benjamin S. Thatcher, David A. Buehler, Patrick D. Martin, and Robert M. Wheat

Kentucky Hunter Perceptions of Harvest Regulations and Their Effects on White-Tailed Deer Populations .. 400
 Kara W. Throgmorton, Jean C. Mangun, and Andrew D. Carver

AGROFORESTRY.. 407

Establishment of Upland and Bottomland Agroforestry Plantations in Tennessee and Mississippi ... 409
 David M. Casey, Scott E. Schlarbaum, John T. Ammons, Fred L. Allen, Donald G. Hodges,
 William G. Minser, III, Arnold M. Saxton, Jason S. Maxedon, Chad Pope, and Chris R. Graves

A Preliminary Economic Analysis of Silvopasture in Missouri’s Ozark Forests 418

Epicormic Response When Converting Hardwood Forests to a Silvopasture 425
 W.D. “Dusty” Walter, Daniel C. Dey, and John P. Dwyer

FOREST PRODUCTS... 433

Assessing Veneer Log Quality Attributes ... 435
 Delton Alderman, David Brinberg, and R.O. Goodykoontz

Current Trends in the U.S. Wood Flooring Industry .. 443
 Brian H. Bond, Matt Bumgardner, and Omar Espinoza

The Occurrence of Log Ellipticality in Hardwoods and Its Impact on Lumber Value and Volume Recovery .. 451
 Brian Bond, Janice K. Wiedenbeck, and Roncs Ese-etame

An Assessment of Hardwood Lumber Markets in China .. 460
 Scott A. Bowe, Matthew S. Bumgardner, and Xiping Wang

Expanding Forest Management to Include Management of Nontimber Forest Resources 470
 James L. Chamberlain
Product Recovery from Tree Grade 1 Northern Red Oak on Menominee Tribal Lands 478
John P. Dwyer and Daniel C. Dey

Can Smaller Diameter Hardwood Logs be Profitably Sawn into Lumber? 485
Matthew S. Scholl, Janice K. Wiedenbeck, and Paul R. Blankenhorn

Using External High-Resolution Log Scanning to Determine Internal Defect Characteristics 497
Ed Thomas, Liya Thomas, Clifford Shaffer, and Lamine Mili

Hardwood Log Merchandising and Bucking Practices in West Virginia 506
J. Wang, S. Grushecky, Y. Li, and J. McNeal

Acoustic Assessment of Stress Level and Potential Wood Quality of Logs Affected
by Oak Decline ... 513
Xiping Wang, Henry E. Stelzer, Jan Wiedenbeck, and Robert J. Ross

NATURAL REGENERATION .. 525

Twenty-Two Year Changes in Regeneration Potential in an Old-Growth Quercus
Forest on the Mid-Cumberland Plateau, Tennessee .. 527
Stacy L. Clark, Scott J. Torreano, David L. Loftis, and Luben D. Dimov

Natural Oak Regeneration Following Clearcutting on the Hoosier National Forest 536
Robert C. Morrissey, John R. Seifert, Douglass F. Jacobs, John A. Kershaw, Jr.,
and Marcus F. Selig

Oak Regeneration Response to Moderate and Heavy Traffic under Mechanical
Harvesting in an Oak-Hickory Forest on the Cumberland Plateau .. 547
Callie Jo Schweitzer

Fifteen Years of Stump Sprout Development for Five Oak Species in Southern Indiana 553
Dale R. Weigel and Daniel C. Dey

ARTIFICIAL REGENERATION ... 561

A Comparison of the 36-Year Performance of Artificial and Natural Oak
Regeneration in the Ridge and Valley Province of Eastern Tennessee 563
Samuel W. Jackson

Evaluating the Flood Tolerance of Bottomland Hardwood Artificial Reproduction 572
John M. Kabrick, Daniel C. Dey, and Jonathan R. Motsinger

Twenty-Four Years of Growth of Naturally Regenerated Hardwoods, Planted Yellow-
Poplar, and Planted Pine in Plots with and without Competition Control on
an Upland Hardwood Site on the Cumberland Plateau Near Sewanee, TN 581
Karen Kuers

Deployment of High-Quality Oak Seedlings from Local Seed Sources Along
Elevational Gradients in West Tennessee Bottomlands ... 591
Jason S. Maxedon, Scott E. Schlarbaum, and Donald G. Hodges

Nitrate Reductase Activity in 1+0 Juglans Nigra Seedlings with N Fertilization 598
M.A. Nicodemus, K.F. Salifu, and D.F. Jacobs

Fifteen-Year Performance of Five Oak Species in Plantation Culture 605
Randall J. Rousseau and Terry L. Robison
Deer Browsing Patterns in a Recently Afforested Bottomland
Kenneth J. Ruzicka, John W. Groninger, and James J. Zaczek

Exponential Nutrient Loading and Retranslocation Response of Quercus Rubra Seedlings
K. Francis Salifu, Douglass F. Jacobs, and Z. Birge

ECOLOGY AND FOREST DYNAMICS

Genotypic Variation in Flood Tolerance of Black Walnut and Three Southern Bottomland Oaks
Mark V. Coggeshall, J.W. Van Sambeek, and Scott E. Schlarbaum

Effects of Shade on the Growth of Natural and Artificially Established White Oak (Quercus Alba L.) Regeneration
Dylan Dillaway and Jeff Stringer

Overstory and Regeneration Structure and Relationships in Mixed Stands on the Southern Cumberland Plateau
Luben D. Dimov and Callie Jo Schweitzer

Culm Production and Morphology of Fresh and Stored Rhizomes from Field-Planted and Wild Giant Cane
John L. Hartleb and James J. Zaczek

Changes in Tree Species Importance Following Harvesting Disturbance in North Mississippi Between 1967 and 1994
Andrew J. Hartsell and James F. Rosson, Jr.

A High Resolution Laser-Based Technique for Quantifying the Elemental Composition of Wood: Applications in Forest Fire Ecological Response
Madhavi Z. Martin, Nicole Labbé, Stan D. Wullschleger, Nicolas André, and Timothy G. Rials

Plant Composition in Oak Savanna and Woodland Restoration at Prairie Fork Conservation Area in Missouri
Nadia E. Navarrete-Tindall, J.W. Van Sambeek, Jamie Coe, and Warren Taylor

Dynamics of a Bottomland Hardwood-Pine Stand in Greene County, Tennessee
Matthew G. Olson and P. Daniel Cassidy

Natural History from Dendrochronology: Maximum Ages and Canopy Persistence of Rarely Studied Hardwood Species
Neil Pederson, Anthony W. D’Amato, and David A. Orwig

Effects of Lime, Fertilizer, and Herbicide on Herbaceous Species Diversity and Abundance following Red Oak Shelterwood Harvest
William E. Sharpe and Chad R. Voorhees

Plant Communities Associated with Multi-Aged Clearcuts in the Missouri Ozarks
Irene M. Unger, Rose-Marie Muzika, and Nevin Aspinwall

Land-Use History and Resulting Forest Succession in the Illinois Ozark Hills
Saskia L. van de Gevel and Charles M. Ruffner

Developing a Field Facility for Evaluating Flood Tolerance of Hardwood Seedlings and Understory Ground Covers
J.W. Van Sambeek, Robert L. McGraw, John M. Kabrick, Mark V. Coggeshall, Irene M. Unger, and Daniel C. Dey
POSTERS ... 735

Spatial Allocation of West Virginia Timber Product Output Data ... 737
 John P. Brown

A Case Study Assessment of Small-Diameter Utilization in the Upper Midwest ... 738
 Matthew S. Bumgardner and Scott A. Bowe

The Role of the WVU Extension Service in Forestry Education and Technical Assistance for Private Forestland Owners ... 739
 Larry G. Campbell, David W. McGill, Chad Pierskalla, and Kevin Saunders

Stem Diameter and Horizontal Crown Area Correlations for Hardwood Tree Seedlings Planted on Reclaimed Strip-Mined Lands in Eastern Kentucky ... 740
 Lucas R. Cecil and Jeffrey Stringer

Individual-Tree, Outside-Bark, Merchantable Green Weight Equations and Scaling Factors for Sawtimber-Sized Northern Red Oak, White Oak, and Sweetgum in Northwest Arkansas 741
 Paul F. Doruska, Jonathan I. Hartley, Matthew B. Hurd, David W. Patterson, and Don C. Bragg

Impact of Channelization and Dam Construction on Kaskaskia River Morphology 742
 Xizhen Du and Karl W. J. Williard

Soil Amendment Effects on Oak Seedlings and Woody Competitors .. 743
 Jennifer Franklin and Richard Evans

Relating Land-Use Practices to Sediment Loads in West Virginia’s Upper Elk River Watershed 744

Composition and Structure of an Old-Growth White Oak Forest in Transition .. 745
 P. Charles Goebel, D.M. Hix, Kathryn L. Holmes, Marie E. Semko-Duncan, and C.E. Dyger

Increased Use of Low-Quality Wood in the Upland Hardwood Region of North America: Can We Utilize More Oak in Oriented Strand Board? .. 746
 Jody D. Gray, Joseph F. McNeel, and John R. Noffsinger

Variation among Years for Mast Production by Oaks in Missouri ... 748
 David P. Gwaze

The Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE) .. 750
 William Hubbard, Daniel Cassidy, and H. Michael Rauscher

Effects of Microstegium Viminum, an Invasive C₄ Grass, on Hardwood Regeneration 751
 Rochelle R. Jacques and Brian C. McCarthy

Effects of Controlled Burning and Shelterwood Thinning on Oak Mast Production in Two Southeastern Ohio Forests .. 752
 Jeffrey A. Lombardo and Brian C. McCarthy

Evaluation and Collection of Superior Black Cherry Trees in the Allegheny National Forest 753
 James McKenna and Keith Woeste

Evaluation of Tree Species Composition as a Tool for Classifying Moisture Regimes in Oak Forests of Eastern Kentucky ... 754
 W. Henry McNab, David L. Loftis, Mary A. Arthur, and Jessi E. Lyons
Carbon Sequestration and Enhanced Wildlife Habitat Resulting from Bottomland Hardwood Afforestation Activities in the Lower Mississippi Alluvial Valley ... 755
Richard P. Maiers, Andrew J. Londo, Donald L. Grebner, Jeanne C. Jones, Changyou Sun, Michael S. Cox, Jarod H. Fogarty, and Janet C. Dewey

Survey of West Virginia Forestry Consultants: Services Provided and Fees Charged to the Private Forest Land Owners in the State of West Virginia ... 757
Dheeraj Nelli, David W. McGill, Kathryn G. Arano, and Shawn T. Grushecky

Fire History of a Southern Illinois Bottomland Forest .. 758
John L. Nelson, Charles M. Ruffner, and John W. Groninger

The Successional Status of Two Table Mountain Pine (Pinus pungens) Stands in the Southern Appalachians, Tennessee .. 759
Christopher M. Oswalt, Wayne K. Clatterbuck, and Brian T. Hemel

Response of the Non-Native Invasive Grass, Microstegium V Dimitum (Trin.) A. Camus, to Three Levels of Canopy Disturbance ... 760
Christopher M. Oswalt, Sonja N. Oswalt, and Wayne K. Clatterbuck

Correlations between Tree Crown Condition and Shade Tolerance, Crown Form, and Light Availability ... 761
KaDonna C. Randolph

Evaluating the Distribution and Shade-Tolerance of Hay-Scented Fern Across a Light Gradient 762
Alejandro A. Royo and Walter P. Carso

Natural Resource Interpretive Programs: An Evaluation .. 764
A.J. Stegmann and B.E. Cutter

Use of Native Seed Mixtures to Improve Erosion Control and Wildlife Habitat on Log Landings following Timber Harvest in the Upper Elk Watershed of West Virginia .. 765
Lisa R. Tager, Shawn Grushecky, David W. McGill, William Grafton, and John Edwards

Influence of Iron Industry Charcoal Production on Forest Composition and Structure on a Western Highland Rim Forest, Tennessee .. 766
Saskia L. van de Gevel, Justin L. Hart, David F. Mann, and Wayne K. Clatterbuck

Value Loss Rate for Hardwood Trees Uprooted in a Severe Windstorm on the Allegheny Plateau ... 767
Janice K. Wiedenbeck and Susan Stout

Utilization Options for Decadent Eastern Hemlock Timber .. 768
Matthew F. Winn and Philip A. Araman

Groundwater Nitrogen and Phosphorus Dynamics in Giant Cane and Deciduous Forest Riparian Buffers ... 769
Chad M. Yocum, Karl W.J. Williard, Sara G. Baer, and James J. Zaczek

Survival and Growth of Northern Red Oak Planting Stock Types through 17 Years after Planting ... 770
James J. Zaczek, Kim C. Steiner, and Tim Phelps
NATURAL HISTORY FROM DENDROCHRONOLOGY: MAXIMUM AGES AND CANOPY PERSISTENCE OF RARELY STUDIED HARDWOOD SPECIES

Neil Pederson, Anthony W. D’Amato, and David A. Orwig

Abstract—Tree-ring research has made significant contributions to our understanding of environmental change and forest stand dynamics. Its application to understanding natural history, however, has been limited. Biodiversity of the central hardwood forest offers many opportunities for tree-ring based, natural history research. Recent tree-ring research examining several rarely studied hardwood species has yielded ages well beyond maximum expectations. For example, a sampling of 20 Magnolia acuminata trees in one population included two individuals 315 and 348 years, respectively, which are nearly two centuries more than the average life expectancy reported for this species. Also, research in recently discovered old-growth stands in western Massachusetts has illustrated the common occurrence of Betula lenta in Tsuga canadensis dominated old-growth forests with individuals frequently living beyond 320 years in these systems. These studies illustrate that tree-ring research can expand our knowledge of the natural history of central hardwood species.

INTRODUCTION

The science of dendrochronology (tree-ring analysis) has enhanced our understanding of environmental change, succession, and forest stand dynamics. In the eastern U.S., this type of research has been substantial and rich (i.e., Lorimer 1980, Foster 1988, Canham 1990, Runkle 1990, Stahle and Chaney 1994, Nowacki and Abrams 1997, Orwig and others 2001, Shumway and others 2001, Lafon and Speer 2002). In recent years, however, dendrochronology has been less frequently applied towards the understanding of natural history (cf. Dayton 2003). This type of natural history information may be more important now than ever before (Dayton, 2003; Schmidly 2005) as species and ecosystems are threatened by invasive species, land-use (development/urban sprawl), forest fragmentation and future climate change. The term ‘natural history’, unfortunately, is a rather nebulous term (Schmidly, 2005). In this paper we will focus on the application of dendrochronology towards determining a species’ longevity and its persistence in the forest. We posit the idea, however, that dendrochronology can reveal many aspects of a species’ life-history traits, which is an important part of its natural history.

Tree-ring studies in old-growth forests are valuable sources of information regarding the natural history of central hardwood species (cf. Rentch and others 2003a,b), as well as the natural disturbance dynamics, and development patterns for forest types throughout the region. This paper will highlight specific examples of new information concerning the natural history of four species. This information is derived from two recent dendrochronological studies in old-growth forests (Pederson 2005, D’Amato and others in review). The purpose of these studies was to identify the climatic sensitivity and growth history of several species in the eastern U.S. (Pederson 2005) and to estimate the amount of old-growth forest in Massachusetts (D’Amato and others in review). And yet, the ease at which new maximum ages were found highlights the fact that there are significant gaps in the natural history of many species characteristics of the central hardwood forest. Our hope is that this paper will stimulate additional research that will enrich our knowledge for many eastern U.S. species.

The first portion of this paper will focus on the longevity of four rarely studied temperate hardwood species: black birch (Betula lenta L.), cucumbertree (Magnolia acuminata L.), red maple (Acer rubrum L.), and shagbark hickory (Carya ovata (Mill.) K. Koch). New data and a review of maximum ages found

1 Neil Pederson, Assistant Professor, Department of Biological Sciences, Moore 235, Eastern Kentucky University, Richmond, KY 40475; Anthony W. D’Amato, Graduate Research Assistant, University of Massachusetts, Holdsworth Natural Resource Center, Amherst, MA 01003-9285; and David A. Orwig, Forest Ecologist, Harvard Forest; Petersham, MA 01366.
in primary literature sources will be compared to illustrate how the ages found in our research are well beyond common maximum age expectations. There is currently no information available for any of these species in the International Tree-Ring Databank, a storehouse of dendrochronological information on hundreds of species worldwide (ITRDB 2005).

The second portion of this paper will focus on the natural history (recruitment, longevity and persistence) of black birch within eastern hemlock-mixed hardwood dominated old-growth forests in Massachusetts. Black birch is commonly reported in association with eastern hemlock (Tsuga canadensis (L.) Carr.) in old-growth forest ecosystems throughout the central hardwood and New England regions (e.g., Hough and Forbes 1943, Foster 1988); however, little is known about the natural history and dynamics of this species in old-growth forests. Data from eleven old-growth eastern hemlock-mixed hardwood forests in western Massachusetts are used to illustrate the surprising persistence of black birch as well as its overlooked importance in the structure and dynamics of old-growth eastern hemlock forests.

METHODS
Increment cores were collected and processed using standard tree-ring analysis techniques (Cook and Kairiukstis 1990). Generally, a minimum of twelve trees in a stand was cored, with one to two cores removed from each tree depending on the goals of the study (Pederson 2005, D’Amato and others in review). Twenty M. acuminata and twenty-one C. ovata trees representing the perceived range of age classes from a stand in George Washington National Forest in the Blue Ridge Mountains of central Virginia were selected for coring (Pederson 2005). Twenty A. rubrum trees in the eastern Catskills, NY equal to or greater than 10 cm dbh within two designated stands were randomly selected for coring (Charles Canham, 65 Sharon Turnpike, P.O. Box AB, Millbrook NY 12545-0129 & Paul Sheppard, 105-C1 West Stadium, Tucson, AZ 85721 USA personal communication). B. lenta outside of Massachusetts were sampled over two periods. In 1974, twelve individuals were sampled at the Mohonk Preserve in New Paltz, NY (Dr. Edward Cook, unpublished data). A second collection of 17 individuals was made at the Preserve in a different stand in 2002 (Neil Pederson, unpublished data). Finally, all trees equal to or greater than 10 cm dbh falling within 3-5 400 m² plots were sampled in the study examining old-growth B. lenta in Massachusetts (D’Amato and others in review).

Cores were glued to wooden core mounts and, in most cases, progressively sanded up to 600-grit sandpaper. B. lenta, M. acuminata and A. rubrum samples were often sanded using 2400 or 3200 grit sandpaper to ensure ring boundaries were visually distinct in these species with diffuse porous ring structures. Samples of B. lenta, M. acuminata and A. rubrum were not stained or enhanced in any way beyond sanding. Ages presented here are derived from crossdated samples. Finally, ages presented here are minimum ages; no extrapolations have been made for the number of missing rings to the center of the tree or the time it took each tree to reach coring height. Therefore, the ages presented for these trees are certainly less than their absolute age.

RESULTS AND DISCUSSION
Maximum Ages for A. rubrum, B. lenta, M. acuminata, and C. ovata
Maximum ages and comparisons for each species are summarized in table 1. Maximum age in a sample of 40 A. rubrum trees is 300 years. The next four oldest trees from this collection were 212, 132, 129 and 128 years old. Interestingly, this maximum age is 150 years greater than the maximum age listed for this species in Loehle (1988) and 10 years older than the oldest reported in the early Pennsylvania study by Hough and Forbes (1943). The oldest Betula lenta tree in a sample of 29 trees is 361 years, while the next four oldest trees were 318, 257, 169 and 166 years old. Similar to the A. rubrum finding, the oldest B. lenta in the population was far greater than the maximum age listed for this species in the current USDA Silvics manual (Burns and Honkala 1990) and Hough and Forbes (1943) (table 1). Further discussion of the age structure of B. lenta will be presented in the next section. The oldest C. ovata in a sample of 20 trees is 354 years old with the next four oldest trees in the population being 257, 255, 254 and 251 years old. The oldest individual tree is 54 years greater than the maximum age for this species listed in Loehle
Finally, the oldest *M. acuminata* in a sample of 20 trees is 348 years old with the next four oldest trees in the population obtaining ages of 318, 215, 177 and 174 years old. The oldest individual tree is 198 years greater than the maximum age for this species listed in urns and Honkala (1990) and 38 years greater than in Hough and Forbes (1943).

Table 1—Comparison of maximum ages from the *Silvics of North America* (Burns and Honkala 1990), Hough and Forbes (1943), and recently acquired data

<table>
<thead>
<tr>
<th>Species</th>
<th>Silvics manual<sup>a</sup></th>
<th>Hough and Forbes</th>
<th>New data</th>
<th>Difference<sup>b</sup></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer rubrum</td>
<td>150</td>
<td>290</td>
<td>300<sup>c</sup></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Betula lenta</td>
<td>265</td>
<td>265</td>
<td>361<sup>d</sup></td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Carya ovata</td>
<td>300</td>
<td>n/a</td>
<td>354<sup>e</sup></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Magnolia acuminata</td>
<td>150</td>
<td>310</td>
<td>348<sup>e</sup></td>
<td>198</td>
<td></td>
</tr>
</tbody>
</table>

^a If no age is given in the Silvics manual, ages are substituted from Loehle (1988) or Hough and Forbes (1943).

^b Difference between new maximum age data and Silvics manual, or if no age is given, Loehle (1988) or Hough and Forbes (1943).

^c Catskill Mountains, NY.

^d New Paltz, NY.

^e George Washington National Forest, VA.

The frequency at which greater ages are found in our studies compared to the Silvics Manual of North America (Burns and Honkala 1990) or Loehle’s (1988) list of known maximum longevity suggests that there is much yet to learn about the basic natural history of central hardwood and eastern US forests. Further, with the exception of *A. rubrum*, the proximity of the next oldest individuals in the recent studies either to the new or previous maximum age suggests that longevity in these species may be even greater than those reported here. This hypothesis is built upon the premise that maximum ages for each species has a normal distribution; a ‘common’ maximum age. It could be, however, that a species’ maximum age could be significantly larger than what is reported if maximum age has an asymmetrical distribution or a long tail (sensu Clark and others 1998). Such a distribution could explain the 800+ year maximum age reported for eastern hemlock (*T. canadensis*) (Burns and Honkala 1990), despite the fact that a collection of more than 1000 *T. canadensis* collected from across its range has not yielded an individual greater than 600 years old (ITRDB 2005).

The similarity of the new maximum ages presented here and those ages reported in the classic study of the high plateau region of Pennsylvania by Hough and Forbes (1943) indicates that these maximum ages may represent a common maximum age. It should be noted, however, that the ages of Hough and Forbes (1943) are ring counts of stumps in the field and could be significantly off due to measurement error. Likewise, a lack of dating control might explain the extreme maximum age reported for *T. canadensis*. Crossdated samples of *A. rubrum* indicate the possibility of up to 12 missing rings per tree in extreme cases (Pederson 2005). Similarly, work on *M. Acuminata* and *B. lenta* indicates that these species can have a significant number (greater than 10) of false and missing rings (N. Pederson, unpublished data). Nonetheless, the near agreement of the Pennsylvania ages and recent studies suggest that the work of Hough and Forbes (1943) provides an excellent early estimate of the maximum ages for many of these species.
Black Birch in Old-Growth Eastern Hemlock Forests

Overall, black birch was a minor component of the old-growth stands investigated in Massachusetts, making up less than 15 percent of the overstory species composition (table 2). Within these stands, black birch was most commonly found in the intermediate and codominant crown classes and attained diameters smaller than the associated hemlock (table 2, mean hemlock diameter = 33.2 cm). Maximum ages of black birch individuals within these stands exceeded those previously reported for this species (Hough and Forbes 1943), including several individuals between 320-332 years old (table 2). In addition, only two of the eleven stands investigated did not contain at least one black birch individual greater than 210 years old (table 2).

Black birch recruitment generally occurred in episodic peaks with other species within these stands (fig. 1). These episodic recruitment patterns indicate that successful birch recruitment occurred predominantly during large disturbance events, such as the hurricane of 1893 (fig. 1). These findings are consistent with other studies that have also demonstrated the importance of moderate disturbance events in facilitating the establishment of black birch (Ward and Stephens 1996). While these recruitment events lead to an increase in the amount of black birch, the age data collected from these sites suggests that several older trees may also have become established from smaller unknown events.

Although other studies have previously reported the presence of *B. lenta* in old-growth forests (Hough and Forbes 1943, Morey 1936, Foster 1988, Orwig and others 2001), this species has traditionally been thought of as an associate of younger forest ecosystems (e.g., Stephens and Waggner 1970, Trimble 1970). The findings from our research indicate that black birch commonly plays a prominent role in the structure and dynamics of old-growth hemlock stands attaining ages well beyond previous expectations. In the populations examined in this study, most *B. lenta* were less than 150 years old; however, 58 percent of those individuals greater than 180 years old have lived beyond 250 years illustrating the ability of this species to consistently persist within the canopy of these old-growth stands. Interestingly, *B. lenta* is often the species replacing eastern hemlock in stands infested with hemlock woolly adelgid in southern New

Table 2—Summary table for attributes of black birch populations in 11 old-growth mixed eastern hemlock stands in western Massachusetts

<table>
<thead>
<tr>
<th>Study area</th>
<th>Importance value</th>
<th>Age</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Mt. Everett</td>
<td>9.4</td>
<td>65 (77)</td>
<td>18.2</td>
</tr>
<tr>
<td>Grinder Brook</td>
<td>5.7</td>
<td>175 (218)</td>
<td>27.3</td>
</tr>
<tr>
<td>Bash Bish Falls</td>
<td>2.8</td>
<td>172 (211)</td>
<td>28.3</td>
</tr>
<tr>
<td>Cold River A1</td>
<td>11.0</td>
<td>127 (251)</td>
<td>28.9</td>
</tr>
<tr>
<td>Cold River A2</td>
<td>9.0</td>
<td>169 (326)</td>
<td>30.3</td>
</tr>
<tr>
<td>Cold River B</td>
<td>9.0</td>
<td>146 (328)</td>
<td>32.0</td>
</tr>
<tr>
<td>Cold River D</td>
<td>8.6</td>
<td>165 (261)</td>
<td>21.4</td>
</tr>
<tr>
<td>Manning Brook</td>
<td>7.2</td>
<td>87 (158)</td>
<td>24.0</td>
</tr>
<tr>
<td>Wheeler Brook</td>
<td>10.4</td>
<td>203 (284)</td>
<td>27.5</td>
</tr>
<tr>
<td>Black Brook</td>
<td>12.5</td>
<td>182 (328)</td>
<td>30.3</td>
</tr>
<tr>
<td>Todd Mountain</td>
<td>6.9</td>
<td>163 (332)</td>
<td>28.4</td>
</tr>
<tr>
<td>Average</td>
<td>8.4</td>
<td>150</td>
<td>27.0</td>
</tr>
</tbody>
</table>

a Importance value = (relative basal area + relative density)/2.

b Average age with maximum found at site in parentheses.
England (Orwig and Foster 1998). In light of our findings, it is likely that *B. lenta* may persist in these affected stands longer than previously expected.

CONCLUSIONS

Data presented here suggests that rarely studied trees species can live much longer than previously thought. Our results also show how dendrochronology is an excellent tool to deepen our knowledge of the natural history of central hardwood tree species. Besides maximum age, tree-ring analysis can reveal other facets of natural history such as how long a species can remain suppressed in the understory, how they respond to disturbance events or how long they can sustain high levels of productivity. Not only will this dendrochronology-derived information help expand our knowledge of natural history, it will provide...
important data for simulation models to produce realistic estimations of tree longevity. Future studies of other central hardwood species will be critical for future efforts aimed at modeling long-term forest dynamics, as well as for predicting the population and system responses to the effects of environmental changes and novel disturbances such as the hemlock woolly adelgid, on future forest structure and composition (Dayton 2003; Schmidly, 2005).

The ‘accidental’ discovery of new maximum ages for four species typical of central hardwood forests and the surprising persistence of *B. lenta* suggests the lack of natural history knowledge for many eastern U.S. tree species. We hope this presentation emphasizes the need for more research. Such research would be an excellent avenue for inspiring motivated undergraduate and graduate-level students to incorporate the field of natural history into their studies.

ACKNOWLEDGMENTS

N. Pederson greatly acknowledges support of the Department of Energy’s Global Change Education Program for support during his dissertation research. Many thanks to Drs. Charles Canham and Paul Sheppard for collecting and sharing the *A. rubrum* samples and Ed Cook for collecting and sharing the New Paltz *B. lenta* samples. This is Lamont-Doherty Earth Observatory Contribution Number 6869.

LITERATURE CITED

