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mense seasonal fluctuations in areal ex-
tent (Fig. 1). The maximum area,
22 x 106 kM2, occurs in September
and the minimum, 4 x 106 km2, in
March (1). Although other estimates
differ slightly (2, 3), all indicate sea-
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106 kM2, an area larger than that of
Antarctica and its ice shelves.
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ly reducing radiative and nonradiative
heat flux between ocean and atmosphere
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ocean's salt balance, ejecting some 3 g
of salt per square centimeter of surface
as a cold brine into the ocean for each
meter of ice formed. This process re-
duces the stability of the ocean surface
layer and convection can ensue. The
convection may penetrate the relatively
warm-saline upper layers of circumpolar
deep water (400 to 600 m deep), which
would result in a significant upward
heat flux into the surface layers and
eventually into the atmosphere (6, 7).
During ice melting the release of rela-
tively fresh water increases the stability
of the surface layer, retarding convec-
tion.

Hence, the seasonal variation of the
ice has important effects on the thermo-
haline structure of the ocean and on the
characteristics of the atmosphere. The
reason for the large seasonal change has
not been investigated; presumably new
ice is added in winter to the outer
fringes of the sea ice field and removed
the following summer. We present the

hypothesis that much of the ice growth
and retreat is due to processes related
to the wind stress within the sea ice
fields.
The curl of the wind stress (8), which

induces a general Ekman divergence of
surface water and sea ice cover, con-
tinuously generates open water regions
with freezing point temperatures within
the ice fields. In winter the open water
fills with new ice and the ice field ex-
pands accordingly, extending northward
as a function of the total divergence
within the existing ice field. The north-
ern extent of the ice may be determined
by an inability of the local heat balance
(in both atmosphere and ocean) to
continually freeze over the open water
generated by the Ekman divergence.
The resulting partial ice cover may then
be destroyed by ocean waves which
penetrate into the ice field. After the
spring equinox, open water regions-
within the ice field increase heat ab-
sorption by the ocean, and rapid ice
melting follows.
The hypothesis can be evaluated by

comparing the observed winter growth
rate of the ice with the rate calculated
from the Ekman divergence. Figure 1
indicates an observed growth rate (mid-
March to mid-August) of 3.3 x 106
km2 per month.
The rate of divergence of the ice can

only be estimated, since understanding
of the behavior of ice on a boundary
layer is incomplete, although one would
anticipate less interference of ice with
the ocean-atmosphere coupling in a di-
vergent Ekman field (9). In view of
these uncertainties we cannot firmly
establish the validity of our hypothesis.
However, we can test to see if it is
reasonable.
The total Ekman transport is directed

at a right angle to the surface wind di-
rection and is proportional to the ratio
of wind stress to Coriolis parameter
(10). However, the full magnitude of
the drift is accounted for in the upper
half of the Ekman layer, and is di-
rected 780 to the left of the wind direc-
tion in the Southern Hemisphere. Below
this segment of the Ekman layer the
contribution to the total drift vector is
a further 12° rotation to the left of the
wind direction. Therefore, the total di-
vergence is calculated by assuming uni-
form horizontal flow in the upper half
of the Ekman layer. The Ekman is
taken to be equivalent to the thickness
of the mixed layer (11), which in the
ice field is about 40 m (7). The data in
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Abstract. The winter expansion of the sea ice surrounding Antarctica and the
subsequent retreat of the ice in summer may be linked with the wind stress acting
on the Southern Ocean in conjunctiotn with the heat exchange in open water re-
gions within the ice fields.
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Fig. 2 indicate an average annual verti-
cal velocity (for the points at and to
the south of the maximum upwelling)
of 10 x 10-i cm/sec for the western
section, and 17 x 10-5 cm/sec for the
eastern section. The April values (in-
troduced since this represents the wax-
ing period) are a bit larger: 12 x
10-5 and 18 X 10-5 cm/sec, respec-
tively. Using a characteristic value of
14 x 10-5 cm/sec, we calculate the
monthly ice growth as equal to the area
determined by the surface divergence.
The ice covers an increasing area and
therefore grows at an increasing rate
(Fig. 1 ).
The calculated rates are less than the

observed rates, but a number of factors
must be considered.

1 ) The model presented is not strict-
ly valid in March and April, when the
ice field is essentially nonexistent. In
these months the ice field is most likely
initiated as thin sheets close to Antarc-
tica. Once this initial ice field forms, the
model presented above becomes an in-
creasingly important factor in the fur-
ther northward expansion of the ice.

2) The wind stress was calculated
according to the bulk aerodynamic
equations (8) with the average geostro-
phic wind velocity, which was then
squared. This yields a smaller value
than would be obtained if the average
of the square of the geostrophic wind
speed were used. To compensate, Roden
(12) doubled the drag coefficient to
2.6 X 10-3. The higher value would
have the effect of doubling the diver-
gence and ice growth. The growth rate
based on data for April and the drag
coeffcient of 2.6 x 10-3 coincides well
with the observed increase to mid-July.
However, the mean geostrophic wind
velocity is greater than the real wind
velocity (13) and at least partially al-
leviates the need for increasing the drag
coefficient. Statistical wind data (14)
show that the mean geostrophic wind
velocities (13) are sufficiently greater
than the observed wind velocities to
warrant use of 1.3 x 10-3 for the drag
coefficient.

3) In the western Weddell Sea ice
is advected northward, then eastward
along 600S (1). This special case is not
included in the model. The area of ice
carried northward in the Weddell Sea
in this way may be 3 X 106 to 5 X 106
km2, based on the residual tongue of
ice along 60°S in the western Atlantic
observed in the early summer months
(1). This area must be subtracted from
31 JANUARY 1975
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