Rivers as connectors and
integrators of the Land Ocean
Continuum

Moyo Ogundipe, Mami Wata, 1999 Acrylic on canvas



Acknowledgments

Douglas Capone USC

Edward Carpenter SFSU

Rachel Foster UCSC

Claire Mahaffey University of Liverpool
Joseph Montoya Georgia Tech

Maren Voss, Joachim Dippner IOW



What’ s in a name?

Iteru - Great River
Indus - River (so Indians are river people?)
Ganges - Stream
Mississippi - Big River
Yangtze - Big or Long River
Euphrates - Sweet Water
(and Mesopotamia - Land between Rivers)

Amazon - from stories of women warriors, original
name Maranon after a local fruit)
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Nile - a greek
corruption of nwy
meaning water
Original name itwr

Hapi

“The running one”
Predynastic 5500-3100 BC
Son of Horus

Male and female

God of fertility (basket of food)




Ganga symbolizes purity and
fertility. Hindu belief holds that
bathing in the river on specific
occasions absolves you of your
sins and helps you attain salvation

Ganga riding on Makara - a
vehicle that was half alligator
half fish

Beginning of Earth Systems?




Youngest Gen Middle Generation Elders

18-39 40-59 60<

Subsistence Uses: drinking, animal and plant habitat, transportation to hunting and
fishing, spiritual connection —

“We have always been a salmon people, The salmon come up the river because
we are their people and we are grateful for them.

They feed us and we take care of the river.”
Utility Uses: Transportation, electricity, washing clothes, bathing
Recreational Uses: Swimming, boating, enjoyment/contemplation
Alessa et al. Global Environmental Change 2007



Water Systems Science & Engineering

Key

Stores
Natural Fluxes
Human Fluxes
and Infrastructure

Studying river plumes
requires an integrative
. ap.proach to earth system
W Science - they connect land
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Big plumes (twice the size of Texas/
size of the Gulf of Mexico) often
extending more than 1000 of km
offshore and often lasting many months
What sustains these plumes?

What are the biogeochemical
consequences”?



Phytoplankton — single cell organisms that photosynthesize

Richard Davidson, courtesy of U.K. Fisheries Research Service



Phytoplankton and Nutrients

Macronutrients Micronutrients
Nitrogen lron

Phosphorus Vitamin B12
Ammonium

Silica

Phytoplankton need nitrogen to make DNA and proteins —

amino acids
Nitrogen combines with hydrogen, oxygen, and carbon from

glucose

Phytoplankton need phosphorus for production of ATP
(energy in the cell)



Image courtesy WHOI



x 1000 tonnes

25,000

20,000

15,000

10,000

5,000

0

r 2.5

r 1.5

+ 0.5

0

1955

1960

1965

—&— Phosphorus

1980 1985 1990 1995 2000 2005

Total Nitrogen ==¥— N:P

2010

n:p

il

N A
RE _de

*kkx*x $1.50

2.70 A $4.10 EURO $1.4147 YEN 115.65

Historic Surge
In Grain Prices

Roils Markets

By ScoTT KILMAN

Rising prices and surging demand
for the crops that supply half of the
world’s calories are producing the big-
gest changes in global food markets in
30 years, altering the economic land-
scape for everyone from consumers
and farmers to corporate giants and
the world’s poor.

“The days of cheap grain are gone,”
says Dan Basse, president of AgRe-
source Co., a Chicago commodity fore-

actino concarn

Increased global demand for animal protein, ethanol, speculation




World fertilizer consumption and population in the past century

1990 2005




NEWS-DIN-predicted dominant sources

of DIN export

Dominant source i / S ' /
of DIN export ! ' \ 4 4 - A

Sewage point sources
Fertilizer

Manure

Biological N2 fixation

Nitrate deposition

Dumont et al 2005 GBC




Trends in annual rates of application of nitrogenous fertilizer (N) expressed as mass of N, and of
phosphate fertilizer (P) expressed as mass of P2035, for all nations of the world except the former
USSR (18, 19), and trends in global total area of irrigated crop land (H20) (18). (B) Trends in
global total area of land in pasture or crops (18). (C) Trend in global pesticide production rates,
measured as millions of metric tons per year (30). (D) Trend in expenditures on pesticide imports
(18) summed across all nations of the world, transformed to constant 1996 U.S. dollars. All trends
are as dependent on global population and GDP as on time (Table 1).
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Eutrophication

The Eutrophication Process

Lighter, fresher, warmer surface layer

Wind and waves
J A oxygenate ) A J ~
\ W surface layer ¥ i ‘ \

Pycnocline layer blocks oxygen flow to bottom waters

Organic material, from
sources such as dead or

dying algae and plankton,
falls to the scafloor and

decomposes,

Pew Trusts



Global distribution of 400-plus systems that have scientifically reported accounts of being
eutrophication-associated dead zones

O Hypoxic system

Human footprint
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R.J. Diaz et al., Science 321, 926 -929 (2008)
Published by AAAS /\




Future changes

Anthropogenic loading (where does urea from fertilizers fit in the

new production paradigm?)
Climate related changes to the hydrological cycle

NITRATE CONCENTRATIONS — MISSISSIPPI RIVER AT ST FRANCISVILLE, LA Hypoxic Zone Size
AND NITROGEN FERTILIZER USE IN THE UNITED STATES Northern Gulf of Mexico
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Figure 9.8 Predicted increasesin DIN export to coastal systems between the years 1990 and 2050 0.1 milimotec/day per 50 yoars

under a business-as-usual (BAU) scenario. Modified from Kroeze and Seitzinger (1998). Dai et al 2009 Journal of Climate




GBO0OAOS SEITZINGER ET AL.: GLOBAL RIVER EXPORT SCENARIOS GBOAOS
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Figure 6. Change in yields (kg km 2 yr ') between 2000 and 2030 from the 5761 basins in the NEWS
model for DIN, DON, and PN and DIP, DOP, and PP under the Global Orchestration scenario.
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Figure 1. Discharge of the Nile at Aswan before and after closure of the High Dam in 1965
(Data from 14).
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Phosphate fertilizer use in Egypt
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Pre Industrial Modern Post modern

All kinds of nuances
*Photoproduction of labile N from DON

«Autotrophic uptake of DON
*Nitrification to produce nitrate
*Size of delta

Importance of the bathymetric kopplung
*Role of mobile muds - time/space buffers?
Denitrification
*Fe/P interaction in anoxic sediments - source of SRP and labile Fe?
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Pre Industrial Modern Post modern
Amazon Mekong Mississippi

Most important of all — the
space to age gracefully
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Figure 1. Schematic diagram of the physical framework used to assess plume residence times on the shelf. (a) For a plume with width W, less than the shelf width W;s
plume water is assumed to be relatively efficiently mixed into the shelf water. Exchange with the open ocean is limited by the generally weak exchange processes at
the shelf break, taken as a combination of wind-driven Ekman transport (Egx) and other shelf break processes (Esp). (b) For a plume that extends beyond the
shelf break, transport of plume water over the shelf break is taken to be a combination of residual cross-plume flow (vres), horizontal dispersion through the plume
(Kh), and wind-driven Ekman exchange driving surface water off the shelf.

Sharples et al GBC 2017
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Need to understand oceanic boundaries. How are niches maintained,
what allows for diversity? How do they change in space and time over
various scales? Can we use biosensors?

P limitation?
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Lobo is an APEX float deployed
in the Amazon River plume
from 10t to 30t Sept. Lobo
did 2 dives a day to 1200m and
measured Temp, Sal, Oxy, chl,
CDOM, and particle backscatter
on each up cast and reported
all the data and its GPS position
on surfacing
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I river for the Amazon calculated usmg the technlque of MuIIer-
Karger et al 1989 was 0.03 for the plume implying that N had to
be recycled 39 times to meet the measured primary production
demand.




Amazon Annual Hydrological Cycle

October

Fig. 2. From Tapley et al 2004
Science

Geoid height differences between
each 2003 monthly gravity solution
and the 14 month mean for equatorial
South America (smoothing radius 400
km; degree-2 coefficients not
included). This level of smoothing
admits more error from the GRACE
estimates, but the large signal in this
region allows a higher resolution.
Spacecraft events resulted in
insufficient ground coverage to
resolve the gravity field for the
months of January and June.
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Amazon River Discharge and Climate Variability:
1903 to 1985

JerFREY E. RICHEY, CARLOS NOBRE, CLARA DESER

Reconstruction of an 83-year record (1903 to 1985) of the discharge of the Amazon
River shows that there has been no statistically significant change in discharge over the
period of record and that the predominant interannual variability occurs on the 2- to
3.vear time scale. Oscillations of river discharge predate significant human influcnces
in the Amazon basin and reflect both extrabasinal and local factors. Cnnt-s‘lvm:l.m

150— A

1

._l‘“ LA
‘ i

100 _ ll ’I "',“‘. ‘\ ‘| I":I il .“‘l ‘|"v|.v'["- il \Iv\"}”JI'.J

Q(10° m¥s)

50—

50—

Q@'(10° m¥s)
o
T

1900 1920 1940 1960 1980
Years

FIg. 2. Discharge of the Amazon River at Manacapurd; (A) discharge time series, 1903 to 1985; (B)
descasonalized Q' hydrograph, 1903 to 1985. Arrows indicate occurrence of ENSO events.
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Mami Wata — a symbol of water systems
science and engineering?

Who is Mami Wata?

« She is Mother Water, Mother of Fishes, goddess of
oceans, rivers and pools, with sources in West and
Central Africa and tributaries throughout the African
Americas, from Bahia to Brooklyn. Usually shown as
a half~-woman, half-fish, she slips with ease between
Incompatible elements: water and air, tradition and
modernity, this life and the next.









