Recent trends and 21st Century projections of ozone pollution extremes over the Northeastern USA during summer

Arlene M. Fiore1 (amfiore@ldeo.columbia.edu), Harald Rieder1, Larry W. Horowitz2, Vaishali Naik3

1Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 2Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ, USA 3UCAR/Geophysical Fluid Dynamics Lab, NOAA, Princeton, NJ, USA

Motivation

- Nitrogen Oxide (NOx) emissions from eastern U.S. point sources decreased by ~50% between 1999 and 2004 [Frost et al., 2006], leading to decreases in surface ozone (O3) documented in several recent studies [e.g., Cooper et al., 2009; 2010; Cooper, 2012].
- U.S. NOx emissions are projected to decline further in the coming decades [e.g., van Vuuren et al., 2011], but rising global emissions, including methane, could offset air quality improvements attained with domestic controls on ozone precursor emissions [e.g., Jacob et al., 1999; Fiore et al., 2003].
- Wu et al. (2008) point out that a warming climate could exacerbate ozone pollution (a ‘climate penalty’), with several modeling systems robustly indicating that the northeastern United States (NE USA) is particularly susceptible [e.g., Cohan et al., 2008; Frost et al., 2012].

How do changes in emissions and climate influence the distribution of surface ozone (O3) – including extreme pollution events, over the NE USA? How should we communicate such changes in extreme O3 pollution events?

Describing Recent Changes in Extreme O3 Events

Summer (JJA) MDA8 O3 1987-2009 Observed at Pennsylvania State CASTNet site

- High tail poorly fit with a Gaussian
- Better fit with Extreme Value Theory (EVT) Approach

Sharp decline in return levels between early and later periods (NOx SIP call)

21st Century Changes in Extreme O3 Events

Representative Concentration Pathway Scenarios (RCPs) [van Vuuren et al., 2011]

Global Methane Abundance

Global NOx Emissions

NE USA NOx Emissions

- We use RCP4.5 (moderate), RCP8.5 (extreme), and RCP4.5 WMGG (moderate); greenhouse gases follow RCP4.5 but pollutants emissions are held at 2005 levels

1-year Return Levels in CM3 (bias-corrected) Summer (JJA) MDA8 Surface O3

INFLUENCE OF CLIMATE CHANGE ON SURFACE O3

Influence of climate change on surface O3

Climate penalty [Wu et al., 2008]**

- Moderate climate change increases NE USA surface O3 1-4 ppb in JJA (agreement in sign for NE USA across prior modeling studies [Weaver et al., 2009])

Similar impacts throughout the O3 distribution

- Several models find larger impacts at high tail; e.g., >50% [Weaver et al., 2009]

1-year Return Levels in CM3 (bias-corrected) Summer (JJA) MDA8 Surface O3

Influence of changes in emissions and climate on surface O3

- Distributions are constructed from 10 years of JJA MDA8 O3 (92 days) in surface air over the NE USA

Large regional NO decreases in RCP4.5

- Nearly all at or below 70 ppb
- All at or below 60 ppb

Doubting of CH4 in RCP8.5 raises baseline surface O3, offsetting some of NOX-driven decreases (as seen in RCP4.5)

References

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Atmospheric Chemistry Program (11-10001); the Office of Science, Office of Basic Energy Sciences, Geosciences Program (DE-FG02-07ER64435); the U.S. Environmental Protection Agency Cooperative Agreement EP-C-08-002; and the Carbon Mitigation Institute at UC Berkeley. We thank B. J. Bloomer, J. A. McKeen, and Y. Fang for useful discussions.