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RR
EC

TE
D
PRSamples were collected every 2–4 weeks from a set of 37 monitoring wells over a period of 2–

3 years in Araihazar, Bangladesh, to evaluate the temporal variability of groundwater
composition for As and other constituents. The monitoring wells are grouped in 6 nests and
span the 5–91 m depth range. Concentrations of As, Ca, Fe, K, Mg, Mn, Na, P, and S were
measured by high-resolution ICPMS with a precision of 5% or better; concentrations of Cl were
measured by ion chromatography. In shallow wells b30 m deep, As and P concentrations
generally varied by b30%, whereas concentrations of the major ions (Na, K, Mg, Ca and Cl) and
the redox-sensitive elements (Fe, Mn, and S) varied over time by up to ±90%. In wells tapping
the deeper aquifers N30 m often below clay layers concentrations of groundwater As were
much lower and varied by b10%. The concentrations of major cations also varied by b10% in
these deep aquifers. In contrast, the concentration of redox–sensitive constituents Fe, S, andMn
in deep aquifers varied by up to 97% over time. Thus, strong decoupling between variations in
As and Fe concentrations is evident in groundwaters from shallow and deep aquifers.
Comparison of the time series data with groundwater ages determined by 3H/3He and 14C
dating shows that large seasonal or inter-annual variations in major cation and chloride
concentrations are restricted to shallow aquifers and groundwater recharged b5 years ago.
There is no corresponding change in As concentrations despite having significant variations of
redox sensitive constituents in these very youngwaters. This is attributed to chemical buffering
due to rapid equilibrium between solute and solid As. At two sites where the As content of
groundwater in existing shallow wells averages 102 μg/L (range: b5 to 648 μg/L; n=118) and
272 μg/L (range: 10 to 485 μg/L; n=65), respectively, a systematic long-term decline in As
concentrations lends support to the notion that flushing may slowly deplete an aquifer of As.
Shallow aquifer water with N5 years 3H/3He age show a constant As:P molar ratio of 9.6 over
time, suggesting common mechanism of mobilization.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The spatial variability of groundwater As concentrations at
scales of 101 to 104 m has beenwell documented for Holocene
(b10 kyr old) fluvial-deltaic aquifers of the Bengal Basin (BGS
and DPHE, 2001; van Geen et al., 2003; Yu et al., 2003). There
is growing evidence that at least part of this heterogeneity can
be attributed to variations in local geology and its effect on
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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shallow groundwater flow (van Geen et al., 2006; Stute et al.,
2007; Aziz et al., in revision; Weinman et al., in press). Such
spatial variability naturally leads to the concern that shallow
groundwater As concentration may also change over time,
especially because subsurface flow is likely to be affected by
large water withdrawals for irrigation in certain areas of
Bangladesh (Harvey et al., 2002; Klump et al., 2006). The
persisting gaps in our knowledge of themechanisms that lead
to Asmobilization (Horneman et al., 2004; Zheng et al., 2004),
combined with pronounced seasonal fluctuations in water
levels in shallow and deep aquifers linked to the monsoon,
make it particularly difficult to predict variations of ground-
water As concentration over space or time. Yet, this under-
standing is urgently needed because a significant proportion
of those shallow wells that presently meet the Bangladesh
drinking water standard of 50 μg/L are, at least temporarily,
shared by villagers of Bangladesh to reduce their exposure to
As and therefore reduce the likelihood of contracting a series
of debilitating diseases (van Geen et al., 2002; Opar et al.,
2007).

There are few high-quality time series data of ground-
water As concentration from the Bengal Basin. The available
data with the As concentrations ranging from 0.4 μg/L to
64 μg/L generally indicate little seasonality or long-term
trends once very shallow (b10 m) are excluded (BGS and
DPHE, 2001; Cheng et al., 2005; van Geen et al., 2005; Cheng
et al., 2006; van Geen et al., 2007). On a different continent,
little change in As concentration over a period of 1–20 years
was also reported for 759 wells from western Nevada, USA,
where concentrations range from b5 to 6200 μg/L in a wide
depth range (28 m±46 m, median 16 m) (Steinmaus et al.,
2005).

Besides a few very shallow (b10 m) wells monitored over
several years (Cheng et al., 2005), there are other credible
reports of significant changes in As concentrations in ground-
water over time. A striking example was the case of a highly-
contaminated private well of unreported depth at Ramnagar
in West Bengal, India, that was monitored biweekly between
July 1992 and June 1993 and showed occasional variations of
~30% around an average of ~2700 μg/L (Chatterjee et al.,
1995). The same group observed a long term rise in ground-
water As concentration in a number of private wells in 23
villages out of 100 villages of West Bengal where initially
water with low As (b50 μg/L) exceeded 50 μg/L over time,
although the datawere not reported (Chakraborti et al., 2002;
Chakraborti et al., 2004). Large seasonal variations of ground-
water As levels were also reported in 5 monitoring wells at
depths of 3–60 m in Samta village of Western Bangladesh
(AAN, 1999), although the measurements of As were few and
made by a less reliable method (silver dithiodicarbomate
spectrometry) in a local laboratory. There is more convincing
evidence that As concentration declined between Septem-
ber–December, 1999, and May 2000 in many of the 68 wells
UN
C

Fig. 1. (a) Locations of six nests of wells were plotted on an IKONOS image of Araih
squares represent an enlarged view of the spatial distribution of As in existing wells
b50 μg/L, and greater or equal to 50 μg/L, respectively. Sites F, C, E, G, A, and B a
concentration in the surrounding wells located in the 400m×400m squares. (c) The
scales for P concentrationwere different for Sites G and B. Error bars on As profiles sh
placed next to the vertical profile at each site.

Please cite this article as: Dhar, R.K., et al., Temporal variability
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sampled twice in four districts of the Red River delta (Berg
et al., 2001). Naturally occurring As in groundwater of Granite
Falls, Washington, ranging in concentration from b10 μg/L to
14,000 μg/L also showed substantial temporal variability of
12–79% for 15 out of 25 private drinking water wells
monitored over 12 months (Frost et al., 1993).

With the present study, we contribute to the body of
groundwater monitoring data by presenting up to 3 years of
bi-weekly tomonthlymeasurements of As, P, Fe, Mg, Ca, K, Na,
Mn, S, and Cl in groundwater at 6 well nests comprised of a
total of 37 monitoring wells installed in Araihazar, Bangla-
desh. These observations not only fill a gap in our under-
standing of temporal variability in groundwater As
concentrations, they also shed new light on the mechanisms
of As mobilization and may help us anticipate future trends in
affected areas. Themonitoring wells tap aquifers from 5–91m
with a wide range of As concentrations from b5 to 600 μg/L in
an area where previous studies have documented a spectrum
of hydrogeological conditions that is representative of much
of the Bengal Basin (Horneman et al., 2004; Zheng et al., 2005;
van Geen et al., 2006). We describe the main temporal
patterns in groundwater chemistry, including long-term
trends, short-term excursions, and seasonal variations in
both shallow and deep aquifers. The variations in ground-
water major ion composition, or mostly lack thereof, are then
discussed in the context of groundwater ages.

2. Methods

2.1. Monitoring wells

The locations of the well nests were chosen to cover the
spatial patterns of groundwater As concentrations established
by a previous survey of 6000 wells distributed over a ~25 km2

area of Araihazar in central Bangladesh (van Geen et al.,
2003). A total of 37 monitoring wells from 5–91 m in depth
were installed at 6 sites (Fig. 1a, Table 1). At each of the sites, 4
or 5 monitoring wells tapped shallow aquifers composed of
Holocene alluvial deposits ranging from 15–30 m in thickness
(Fig. 1c). The sites were arranged in most figures according to
increasing average As concentrations of existing shallow
(b30 m) wells within the 0.16 km2 area centered by each of
the nest of wells: 18 μg/L (b5 to 112 μg/L) at Site F, 19 μg/L (b5
to 143 μg/L) at Site C, 65 μg/L (b5 to 254 μg/L) at Site E, 94 μg/L
(8 to 352 μg/L) at Site G,102 μg/L (b5 to 648 μg/L) at Site A, and
272 μg/L (10 to 485 μg/L) at Site B (Fig. 1b). At all locations
except for Site B, at least one monitoring well N30 m deep
reached distinctly orange/brown colored sands of Pleistocene
age (Fig. 1c). At Site B, grey Holocene sediments were
observed even to a depth of 91 m (Zheng et al., 2005). At
each site, one or several layers of fine-grained sediment
separate the shallow aquifers that are elevated in As from the
deep aquifers that are low in As concentration (Fig. 1c).
azar study area in central part of Bangladesh (inset). (b) The 400 m×400 m
surrounding the 6 well nests. Green and red solid circles indicate the As level
re arranged from left to right and color coded with increasing average As
depth profiles of average groundwater As and P concentration for all sites. The
owed the fluctuations over the entire monitoring period. A lithology sketch is

of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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Table 1t1:1

Composition of groundwater in aquifers from six well nests of 37 monitoring wells in Araihazar, Bangladesh
t1:2
t1:3 Depth

(m)
Age
yearsa

Elevation
(m)

Sample
number

pHb Ehb(mV) Cond.(mS/m)b As (μg/L) P(μmol/L) SMC(meq/L) Na (meq/L) Cl (meq/L) Fe (μmol/L) Mn (μmol/L) S (μmol/L)

t1:4 Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdev Avg Stdevt1:5

Site A (23.785°N, 90.603°E) — Village: Dari Satyabandi, all multlevel wells were installed in January 2001
t1:6 7 3.5 7.47 43 6.46±0.0 6 −76±12 54±13 80±8 20±5 5.6±1.0 1.0±0.16 1.2±0.13 413±86 47±13 374±106
t1:7 10 10.8 7.47 43 6.66±0.04 −79±13 39±10 132 ±8 16±1 4.2±0.6 0.7±0.11 0.7±0.08 159±22 51 ±7 135±60
t1:8 13 20.3 7.43 42 6.92±0.05 −150±17 51±18 538±64 31±8 5.4±0.4 0.9±0.20 1.3±0.12 262±37 96±6 25±16
t1:9 15 31.7 7.40 38 7.00±0.04 −158±14 63±21 359±45 26±5 7.0±0.3 2.0±0.16 1.0±0.07 334±1 18±2 6±1
t1:10 30 – 7.53 41 6.60±0.05 −58±17 34±9 0.5±0.03 4±0.3 3.5±0.2 2.5±0.14 0.8±0.04 10±5 2±1 14±12
t1:11 37 – 7.51 41 6.52±0.06 −45±24 28±7 0.5±0.02 4±0.3 3.7±0.2 2.6±0.24 0.8±0.02 10±5 2±1 15±14
t1:12 43 – 7.48 41 6.52±0.05 −57±25 28±7 1.0±0.03 7±1 3.0±0.2 1.8±0.13 0.9±0.06 52±30 6±3 18±16
t1:13 91 – 7.50 21 6.53±0.09 −56±27 32±9 1.3±0.04 10±1 3.8±0.3 1.8±0.27 1.4±0.05 224±85 2±1 29±9t1:14

t1:15

Site B (23.780°N, 90.640°E) — Village: Baylakandi, multlevel wells were installed in Jan. and May 2001
t1:16 7 1.6 7.42 31 6.62±0.07 −100±26 101±31 30±6 57±18 11.8±1.3 2.3±0.48 4.3±0.44 430±95 17±4 677±189
t1:17 11 19.2 7.37 29 6.64±0.05 −120±17 92±31 298±47 56±8 12.0±1.2 2.3±0.53 3.5±0.35 431±180 40±6 350±117
t1:18 14 19.3 7.52 38 6.84±0.08 −142±24 57±15 536±65 60±8 9.7±1.1 1.7±0.25 4.0±0.46 380±58 20±6 161±104
t1:19 19 23.3 7.49 32 6.93±0.07 −155±16 58±18 403±36 56±6 8.2±0.5 1.2±0.26 1.9±0.16 417±104 24±3 9±6
t1:20 29 – 7.49 25 6.71±0.07 −126±5 94±1 234±21 55±5 8.2±0.2 1.3±0.16 2.5±0.21 363±52 6±1 3±3
t1:21 41 – 7.46 40 6.94±0.07 −143±16 58±14 21±2 45±4 6.0±0.3 0.7±0.06 0.3±0.02 193±39 1±0.3 5±3
t1:22 53 – 7.47 40 7.13±0.10 −151±23 44±8 17±1 17±1 4.4±0.2 1.8±0.14 0.3±0.01 120±13 3±0.3 4±4
t1:23 91 – 7.60 23 6.91±0.16 −113±21 33±5 0.3±0.01 4±0.3 3.5±0.1 1.8±0.12 0.1±0.00 25±2 1.6±0.1 b0.03±0.0t1:24

t1:25

Site C (23.790°N, 90.611°E) — Village: Bhuyan Para (Satyabhandi), multlevel wells were installed in March 2002
t1:26 5 0.0 6.93 18 7.04±0.25 −113±27 58±23 12±2 35±7 2.7±2.3 1.5±2.25 0.6±0.72 818±280 24±7 25±18
t1:27 8 0.8 7.01 18 6.79±0.17 −132±8 83±16 38±2 24±4 2.6±2.4 1.4±2.04 0.7±0.77 1694±704 63±28 26±16t1:28
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t1:30 11 2.6 7.01 18 6.46±0.11 −111±22 52±9 42±3 22±2 1.6±0.7 0.6±0.50 0.6±0.56 1311±697 34±14 11±7
t1:31 14 2.8 7.00 18 6.58±0.15 −114±29 36±12 70±9 31±4 2.8±0.3 0.4±0.06 0.3±0.04 773±76 33±3 23±16
t1:32 53 – 7.01 18 6.38±0.15 −33±25 28±3 1±1 4±1 2.9±0.2 1.2±0.10 0.6±0.04 117±92 13±2 10±8
t1:33t1:34

Site E (23.790°N, 90.616°E) — Village: Hatkhola Para, multlevel wells were installed in March 2002
t1:35 5 9.6 6.39 16 6.65±0.11 −40±29 34±7 43±2 8±1 4.9±0.6 0.4±0.04 0.2±0.02 48±11 17±2 232±74
t1:36 8 – 6.42 16 6.73±0.12 −118±38 34±10 82±4 27±2 3.8±0.5 0.4±0.04 0.1±0.01 424±48 35±4 80±42
t1:37 11 18.1 6.44 16 6.90±0.09 –140±48 35±10 166±12 29±2 4.2±0.3 0.5±0.08 0.1±0.01 392±123 33±3 2±1
t1:38 14 – 6.42 16 6.82±0.13 −148±1 42±23 162±15 25±2 5.2±0.5 1.2±0.17 0.8±0.03 498±143 17±5 1±1
t1:39 38 – 6.45 16 6.55±0.10 −60±39 52±19 0.3±0.02 3±0.3 5.7±0.3 2.5±0.30 1.2±0.03 56±19 5±2 b0.03±0.0t1:40

t1:41

Site F (23.774°N, 90.605°E) — Village: Lashkardi (Mosque), multlevel wells were installed in March and November 2002
t1:42 6 0.8 7.90 21 6.18±0.12 95±92 18±2 0.2±0.02 0.1±0.1 1.6±0.3 0.2±0.06 0.2±0.06 2.4±2 2.6±1 37±25
t1:43 11 – 7.87 22 6.23±0.10 10±50 21±8 35 ±3 2±1 1.8±0.3 0.1±0.02 0.2±0.04 63±22 31±8 24±15
t1:44 15 5.3 7.81 22 6.73±0.23 −47±60 21±3 51 ±5 4±1 2.4±0.1 0.1±0.01 0.1±0.01 31±18 27±3 15±9
t1:45 19 29.1 7.76 22 6.88±0.11 −63±55 29±6 215 ±19 17±3 3.7±0.3 0.3±0.02 0.04±0.00 27±16 42±2 35±4
t1:46 26 – 7.74 14 7.00 0.00 −200 63 225 ±15 32±4 5.2±0.4 0.5±0.03 0.2±0.01 350±22 35±3 0.3±0.0 2
t1:47 58 – 7.91 22 6.95±0.08 −63±23 154±8 0.3 ±0.02 5±0.4 12.5±1.0 11.4±0.94 9.7±0.74 5.7±2 9±0.4 9±4
t1:48t1:49

Site G (23.774°N, 90.601°E) — Village: Lashkardi (Bilbari), multlevel wells were installed in March 2002
t1:50 6 21.4 20 6.75±0.07 −127±24 41±8 127 ±16 57±13 4.6±0.2 0.4±0.02 0.1±0.01 610±189 25±4 22±1
t1:51 9 13.1 20 6.67±0.10 −111±38 45±11 159±13 108±23 5.2±0.3 0.4±0.02 0.1±0.01 501±66 8±2 6±4
t1:52 14 26.0 20 6.93±0.08 −144±23 36±10 102±5 35±3 4.0±0.3 0.4±0.06 0.2±0.02 294±50 30±3 1±0.4
t1:53 21 – 20 7.05±0.11 −163±31 42±7 173±15 42±4 4.2±0.3 0.4±0.09 0.6±0.06 194±46 28±2 2±2
t1:54 52 – 20 6.85±0.09 −88±34 145±19 7±1 7±1 10.9±1 9.9±0.56 7.2±0.60 13±8 12±1 31±2
t1:55

a3H/3He age reported by Stute et al. (2006).
t1:56

bData based on monthly measurements from March 2004 to February 2005.t1:57

Q1
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2.2. Sampling and field measurements

Bi-weekly to monthly groundwater samples from the mon-
itoringwells were collected from Jan. 2001 to Feb. 2004 at Sites
UN
CO

RR
E

Fig. 2.Water level above sea level (WLASL) spanning the entire monitoring periods fr
of the panels from top to bottom show in sequence, the temporal variability of As
concentrations are plotted as the ratio (C/Cavg) of the concentration at the time of the
In each panel, the bold line always represents the shallowest well of the site.

Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
A and B, and fromMarch 2002 to Feb. 2004 at Sites C, E, F and G.
Each well was pumped for at least 15 min by a battery-driven
submersible pump (Whale SuperPurger) at a rate of ~2 L/min.
The 15 min of pumping allowed conductivity and temperature
CT
ED
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F

om the shallowest well of each site is shown in the upper most panel. The res
concentration in shallow aquifers for Sites F, C, E, G, A, and B. Dissolved As
sampling (C) versus the average concentration of the entire time series (Cavg)

of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
t
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readings to stabilize before sampling. Samples for As, other
trace elements, and major cations were collected in 30-ml or
60-ml acid-cleanedHDPE bottles and acidified to 1%HCl (Fisher
UN
CO

RR
E

Fig. 3. Temporal variability of the sum of major cations (SMC) in shallow aquifer was
in Fig. 2 panel) from top to bottom in sequence for Sites F, C, E, G, A and B. Concentrat
the sampling (C) versus the average concentration of the entire time series (Cavg). Si

Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
Optima) immediately after collection and without filtration.
We, and others before us, have shown that the standard
monitoringwell screens in Bangladeshare typically sufficient to
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shownwith the groundwater level fluctuation of the shallowest well (same as
ions of SMC are plotted as the ratio (C/Cavg) of the concentration at the time of
milar to Fig. 2, the bold line always represents the shallowest well of the site.

of groundwater chemistry in shallow and deep aquifers of
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exclude particles thatmight dissolve upon acidification,where-
as filtration can produce artifacts unless carried out under
nitrogen in-line (Zheng et al., 2004). Samples for anions were
collected in nanopure-washed 30 ml HDPE bottles without
filtration. Starting in April, 2004, pH, ORP, temperature, and
electrical conductivity of the groundwater wasmeasured using
a pH/Eh meter (Orion 210A) and a conductivity/temperature
meter (Orion 105A+) with waterproof probes that were
calibrated on the day of sampling. The groundwater level in
each well was monitored every 1–2 weeks over the same time
period using an electric water-level meter (Solinst model 101).

2.3. Laboratory measurements

Concentrations of As, P, Fe, Mn, S, Ca, Mg, K, Na and 33 other
trace elements in acidified groundwater were measured at
Lamont–Doherty Earth Observatory with a reproducibility
typically b5% by high-resolution inductively-coupled plasma
mass spectrometry (HR ICP-MS) using an Axiom single-
collector instrument (Thermo Elemental, Germany) (Cheng
et al., 2004). Protocols that were followed to ensure the
accuracy and precision of the data included: (1) two NIST
standard referencematerials (1640 and1643E, Trace element in
natural water), and an internal laboratory consistency standard
(LDEO tap water spiked with analyte elements) were included
with each run. Results for these standards were always within
5% of the certified values after calibration of the instrument
with separate standards at the beginning and end of each run
(Chenget al., 2004); (2)wheneverpossible, time-series samples
from the same well were analyzed within the same run of 30
UN
CO

RR
E

Fig. 4. The temporal variability of As and SMC in deep aquifers spanning the entire mo
The upper most panel shows fluctuation of water level above sea level (WLASL) at the
in μg/L and SMC in meq/L at the deep aquifer wells in all sites.
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samples, which usually improved the reproducibility to b3%;
(3) At least 2 samples were re-analyzed between two con-
secutive runs for the same well to ensure consistency between
runs. Concentrations obtained for these replicates usually did
not differ from each other by more than 3%.

Dissolved Cl− and SO4
2− concentrations in un-acidified

groundwater samples were measured at Queens College by
ion chromatography (IC) using a DIONEX-500 IC system,
following the standard protocol of EPA method 300. Compar-
ison of SO4 data obtained by IC with total S concentrations in
acidified samples obtained by HR ICP-MS showed that S
quantified by HR ICP-MS was essentially all in the form of
sulfate at all sites (slope of S by ICPMS versus SO4 by IC is
1.0027, R2: 0.9812, n=181).

In addition to measurement by HR ICP-MS, phosphate
present in groundwater was also quantified as dissolved
reactive phosphate (DRP) using molybdate-blue colorimetry,
modified to determine also dissolved As (Dhar et al., 2004). A
comparison of colorimetric and HR ICP-MS data indicates that
not all P present in groundwater reacts with molybdate. At
Sites A and B, total P concentrations in shallow (b30 m)
groundwater measured by HR ICP-MS were consistently
higher by 30% (R2=0.99, n=11) than DRP concentrations for
samples collected in January 2003, suggesting that a fraction
of the P could be in a non-reactive organic form (Stauffer,
1980). In contrast, total P concentrations measured by HR ICP-
MS were only ~10% and 5% higher than DRP concentrations in
shallow groundwater from Site C and Site F, respectively, for 2
sets of samples collected in Jan. 2003 and Oct. 2003 (Site C:
R2=0.99, n=4; Site F: R2=0.99, n=6).
CT
ED

nitoring periods are shownwith thewater level fluctuations in deep aquifers.
deep aquifer wells in six sites. Other two panels displayed the variability of As

of groundwater chemistry in shallow and deep aquifers of
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2.4. Statistical analysis

The rate of increase or decrease per year in 37 shallow and
deep wells was examined by performing a regression analysis
of As, P and other ions concentration versus time for each well
over the entire period except for C where the post summer
2003 flood period was excluded (Nov. 2003 to Feb. 2004,
Figs. 2 and 3) due to very large change in Na and Cl. Trends of
different constituents including As, P, sum of major cations
(SMC), Cl, Fe, Mn and S were considered to be statistically
significant if p valueswere b0.05. Formost wells, the residuals
were randomly and normally distributed around the linear
trend line. The uncertainties in the rate of increase or decrease
(e.g. the slope of regression) were expressed as 95%
confidence intervals.

3. Results

The temporal data of both shallow (b30 m) and deep
(N30 m) groundwater As and SMC (2[Ca]+2[Mg]+[Na]+[K])
are plotted as the ratio (C/Cavg) of the concentration at the
time of the sampling (C) vs. the average concentration of
the entire time series (Cavg) for Sites F, C, E, G, A to B (Figs. 2, 3
and 4). Similar plots for other constituents are included as
supplemental material. The depth profiles of variation in
concentration of groundwater constituents including As, P,
SMC, Cl, Fe, Mn and SO4 are shown for both shallow and deep
UN
CO

RR
E

Fig. 5. Variation of As, P, SMC, Cl, Fe, Mn, S in shallow and deep aquifers of six sites are
shown right below the 60 m depth and do not represent the actual depths of the w
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aquifers of all 6 sites, with the variation expressed as percent
relative standard deviation (%RSD) (Fig. 5). A statistically
significant temporal trend of As concentration is observed for
11 out of 37 wells in both the shallow and deep Holocene
aquifer (Table 2). A decrease in As concentration over time is
observed at 9 wells; an increase is recorded at only 2 wells.
Correlation coefficients (R) for As trends in these wells varied
from 0.5 to 0.85. The 26 wells that did not show statistically
significant trends include most of the shallow and deep wells
with a very low As (b10 μg/L) content (Tables 1 and 2).

3.1. Water levels

Water levels in shallow and deep monitoring wells varied
seasonally from 2–3 m above sea-level (asl) during the dry
season to 6–7m asl during thewet season in both shallow and
deep monitoring wells (Figs. 2, 3 and 4). Water level data for
the period July–October 2003 in both shallow (Figs. 2 and 3)
and deep aquifers (Fig. 4) at low-lying Sites C, E, and G were
not recorded because the monitoring wells were not acces-
sible due to pronounced flooding. The fluctuations in water
levels tracked each other within ~0.3 m in all shallow (b30m)
monitoringwells over a period of 3 years. In contrast, the deep
wells from the Pleistocene deep aquifer could be grouped in
two categories, with water levels at fresh water Sites A and C
remaining ~2 m belowwater levels at more saline water Sites
E, F, and G throughout the seasonal cycle (Fig. 4).
CT
ED

P

shown as %RSD. The variations of the two 91m deep wells at Sites A and B are
ells.

of groundwater chemistry in shallow and deep aquifers of
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Table 2t2:1

Trends in groundwater chemistry from six well nests of 37 monitoring wells
in Araihazar, Bangladesh

t2:2
t2:3 Depth aAs P SMC C1 Fe Mn S

t2:4 (m) (μgL−1 y−1) (μmolL−1y−1) (meqL−1 y−1) (μmolL−1 y−1)t2:5

Site A
t2:6

b7 −3±2 −2 −0.5 35 −9 −62
t2:7 10 −1 −3 27
t2:8 13 −5 0.3 0.1 15
t2:9

b15 −34±10 −3 −1
t2:10 30 −3 −1 10
t2:11 37 −0.7 −8 10
t2:12 43 −1.3 4
t2:13 91 11
t2:14

t2:15 Site B
t2:16 7 −4±1.8 −0.2 −2
t2:17

b11 −41±11 −5 0.9 0.3 171 −4 65
t2:18 14 − 7 −1.0 −0.5 −5 −86
t2:19 19 −19±12 −0.4 −0.2 94 −3
t2:20 29 −23±8.3 0.1
t2:21

b41 −2±0.6 −6 0.2 27 2
t2:22 53 −1±0.5 −0.2 26 −3
t2:23 91 2
t2:24

t2:25 Site C
t2:26 5 270
t2:27 8
t2:28 11 −0.3 −0.2 251
t2:29 14
t2:30 53 −0.2 −0.1
t2:31

t2:32 Site E
t2:33 5 −0.1 −2
t2:34 8
t2:35 11 19±7 −0.3 0.0 169
t2:36 14 −8 −0.6 −7
t2:37 38 −1.2 −3
t2:38

t2:39 Site F
t2:40 6 0.2 −21
t2:41 11 −1 0.3
t2:42 15 −15 2 −8
t2:43 19 −21±12 −0.2 −17
t2:44 26 0.6 0.0
t2:45 58 0.9

t2:46

t2:47 Site G
t2:48

c6 14±12 0.2 −161 −4
t2:49 9
t2:50 14 −3 0.0 −42
t2:51 21 −4 0.5 0.1 3
t2:52 52 −0.8 0.9 −1 −3

aUncertainties was shown as 95% confidence intervals.
t2:53

bWells that show the decreasing trend for [As] and [P].
t2:54

cWell that does not fall in normal probability plot blank space indicates that
trend was not statistically significant (p value is N0.05).t2:55
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CO3.2. Chemistry of shallow aquifers

3.2.1. Arsenic
Concentrations of As in groundwater sampled from the 26

shallow (b30 m) monitoring wells spanned three orders
of magnitude, from b1 μg/L at F-6 m to 600 μg/L at A-13m and
B-14 m. Groundwater As concentration generally increased
with depth starting from the shallowest monitoring well,
peaks at ~15 m at Sites A, B, C and E, and at ~20 m at Sites F
and G, and then declined again towards the deeper part of the
shallow aquifer (Fig. 1c).
Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
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3.2.1.1. Trends. Overall, the temporal variability of As
concentration observed in the 26 shallow monitoring wells
was limited (Fig. 5), with a RSD b19% over amonitoring period
of up to 3 years (Table 1). However, linear regression of As
concentration as a function of time indicated that there were
statistically significant long-term trends (pb0.05) for 11 wells
out of a total of 26 shallow monitoring wells (Table 2). The
largest decreases of −19 to −41 μg/L yr−1 were observed at
Sites A, B and F for 5 wells containing N200 μg/L of As. In
contrast, monitoring data for onewell at Site E and onewell at
Site G, both containing ~150 μg/L of As, showed average
increases of +19 and +14 μg/L yr−1, respectively.

3.2.1.2. Excursions. In addition to these long-term trends,
there were noteworthy reductions of ~50% of As in ground-
water at three different Sites: C-14 m, G-6 m and A-13 m
for shorter duration starting July–August 2002 (Fig. 2). By
November 2002, however, As concentration in all three wells
had returned to within 10 μg/L of their respective long-term
averages. A different situation was observed during the
particularly severe flooding season of 2003 when, at well
C-5 m and only in this well, a drop from 14 to ~9 μg/L in
As concentration was sustained over several months but
returned to 12 μg/L by Feb.2004 (Fig. 2).

3.2.1.3. Seasonality. Only a single well A-7 m, the shallowest
at Site A, exhibited seasonal variations in groundwater As
concentration that were consistent from year to year (Fig. 2).
The amplitude of the fluctuations was on the order of ~10%
around a mean As concentration of 80 μg/L, with lower
concentrations corresponding to the wet season (May and
October). There may also be a connection between As
concentration and water level at B-7 m, but it was limited
to 2003 and in this case As concentrationwas high during the
wet season.

3.2.2. Phosphorus
Similar to As, concentrations of phosphorus (P) in shallow

groundwater spanned three orders of magnitude: from 0.11
±0.07 μmol/L at F-6m to 108±23 μmol/L at G-9m (Table 1). The
contrast between these two monitoring wells was particularly
striking because they are only 400m apart and their depths are
comparable (Fig. 1a). Depth profiles of groundwater P concen-
tration at Sites A, E, and F was broadly similar in shape to their
corresponding As concentration profiles, at an average atomic
P:As ratio of 11±6 (Fig. 1c). For at least one shallowmonitoring
well at Sites B, C, and G, groundwater P concentration exceeded
30 μmol/L even thoughAs concentration in the samewell water
was no higher than ~100 μg/L, corresponding to a P:As molar
ratio of 105±92.

3.2.2.1. Trends. The fluctuations (%RSD) in groundwater
P concentration over time remained b32% (Fig. 5), exclud-
ing F-6 m where P concentration were particularly low
(Table 1). Statistical analyses for 9 shallow wells indicated
a small long-term decrease between −1 to −8 μmol/L yr−1.
For only 4 wells (A-7 m, A-15 m, B-11 m and B-41 m), how-
ever, the decrease in P concentration was accompanied by
a detectable decline in As concentration. An increase in
P concentration over time of +7 μmol/L yr−1 was recorded at a
single well B-14 m (Table 2).
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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3.2.2.2. Excursions. Along with the As concentration de-
creases of ~50% observed in A-13 m, C-14 m, and G-6 m in
July–August 2002, P concentration in the same shallow wells
declined by up to 80% in September 2002 before returning to
previous levels by November 2002. During the summer flood
of 2003 that coincided with a decrease in As concentration in
well C-5 m, there was instead a P concentration increase from
27 to 46 μmol/L that extended to the end of the monitoring
period.

3.2.2.3. Seasonality. Seasonal fluctuations in P concentra-
tion were found in a few shallow wells and also observed to
be in phase with As concentration in two shallow wells at
Sites A and B. For well A-7m, P concentrations varied between
10 and 30 μmol/L during the wet and dry season, respectively.
There was also a measurable increase in P concentration
during the wet season of 2003 in well B-7 m, is consistent
with As fluctuation in the same year. Well F-6 m displayed
seasonality in P concentration with higher values in the wet
seasons, albeit around a low average of 0.1±0.1 μmol/L.

3.2.3. Major cations and chloride
Expressed in equivalents, the sum of major cations (SMC),

including Na+, K+, Mg+2, and Ca+2, in shallow (b30 m) mon-
itoring wells spanned an order of magnitude, from 1.6±
0.7 meq/L at C-11 m to 12±1.3 meq/L at B-7 m (Table 1).
Chloride concentrations in shallow aquifers also spanned
about an order of magnitude, from 0.040±0.004 meq/L at
F-19 m to 4.3±0.4 meq/L at B-7 m (Table 1).

3.2.3.1. Trends. The temporal variability of the major ion
composition of shallow well water was comparable to that of
As and P concentration, with %RSDs remaining below 20%,
30% and 30% for SMC, Na and chloride concentrations, re-
spectively (Table 1; Fig. 5). These measures of variability
exclude, however, the nearly 3-fold increases in SMC and Cl
concentrations in monitoring wells C-5 m, C-8 m, and C-11 m
observed at the end of the wet season in 2003 (Fig. 3). Of
the total of 26 shallows wells that were monitored, the SMC
times-series indicated an statistically significant (pb0.05)
decrease of −0.24 to −1.03 meq/L yr−1 at 7 wells and an
increase of +0.11 to +0.88 meq/L yr−1 at 8 other wells
(Table 2).

3.2.3.2. Excursions. SMC concentrations did not vary ap-
preciably in the 3 shallow wells where both As and P con-
centration declinedmarkedly for the period of several months
centered on September 2002 (Figs. 2 and 3). On the other
hand, a major salt pulse was observed after the summer flood
of 2003 in three shallow wells at Site C, with up to 3 times
higher concentrations of SMC and Cl compared to the pre-
vious year (Fig. 3). Concentrations of SMC actually already
started to rise in wells C-5 m and C-8 m in May 2003 and
reached their highest level in November 2003 and January
2004, respectively. Concentrations of SMC also eventually
rose in well C-11 m, but only later in January 2004, whereas
no marked change in SMC was observed throughout the
period at well C-14 m. The increases in SMC reflected largely a
rise in dissolved Na in groundwater, from ~0.3 meq/L in April
2003 to maxima ranging from 2 to 7 meq/L in subsequent
months. The progression of Cl concentrations over the same
Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
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period in all shallow wells at site C was similar to that of Na,
although there was a gap in the Cl time series that extended
from February 2002 to October 2003.

3.2.3.3. Seasonality. The concentrations of SMC in well
A-7 m, where the clearest seasonal variations in As and
P concentration were also detected, were low during the
wet season and high during the dry season (Fig. 3). In
contrast to some of the other shallow wells, these changes
reflected primarily changes in Ca and Mg, with the sum of
their concentrations fluctuating between 1.2 and 2.2 meq/L.
Although the duration of sampling was relatively short at
F-6 m, SMC and Cl both appeared to be systematically
elevated in this well during the dry season (Fig. 3), when
P concentration was particularly low (As concentration re-
mained b0.5 μg/L).

3.2.4. Iron, manganese and sulfur
Of all the constituents of groundwater that were quanti-

fied, the concentrations of the redox-sensitive elements Fe,
Mn and S varied the most spatially and temporally (Fig. 5
and Table 1). Dissolved Fe concentrations spanned nearly
three orders of magnitude, from 2.4±2 μmol/L at F-6 m to
1694±704 μmol/L at C-8 m (Table 1). Dissolved S concentra-
tions also ranged over three orders of magnitude, from 0.3±
0.02 μmol/L at F-26 m to 677±189 μmol/L at B-7 m. Mn
concentrations were not quite as variable and ranged from
2.6±1 μmol/L at F-6 m to 96±6 μmol/L at A-13 m. There was
no consistent relationship between depth profiles of Fe or Mn
at each site with the corresponding profiles of As or P con-
centration. Groundwater SO4 concentration, however, gen-
erally decreased with depth at all sites.

3.2.4.1. Trends. There is no systematic relationship between
trends in Fe, Mn, S, and As (Table 2).

3.2.4.2. Excursions. At Site C, three shallow wells that were
impacted by the salt pulse during the summer 2003 flood,
showed an increase of Fe concentration andMn concentration
but a decrease of SO4 concentration after the summer (Fig. 6).
Fe concentration increased by a factor of 2 to 4; Mn con-
centration increased by a factor of 3 (Fig. 6). Groundwater SO4

concentration decreased from 129, 72 and 16 μmol/L to very
low values of 3, 4 and 2 μmol/L in Feb., 2004 (Fig. 6).

3.2.4.3. Seasonality. The seasonal fluctuations in ground-
water composition observed at well A-7 m over a 3 year
period were systematic for As, P, SMC, Fe and Mn. In parallel
with changes in concentration of SMC, As and P, concentra-
tions of Fe and Mn rose during the dry season and dropped
during the wet season. These variations were not accompa-
nied by a consistent seasonal pattern for S in well A-7 m. In
well F-6 m, a pronounced seasonality in groundwater con-
stituents other than As was observed for Fe, Mn and P with
low values found in the wet seasons.

3.3. Deep aquifers

In contrast to shallow aquifers of Araihazar, the overall
composition of deep (N30 m) aquifers was remarkably stable
over time except for Fe and SO4 concentration (Fig. 5). In a
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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Fig. 6. Depth profiles of Cl, SMC, Na, Fe, Mn, S, P, and As of 4 shallowwells at Site C. Average pre-flood profiles were comparedwith 4 consecutive post-flood profiles
after the flood in the summer of 2003. The black solid circles indicate the average concentration prior to the 2003 flood (March 2002 to July 2003) and error bar
represents the standard deviation from the average in pre-flooding period.
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sense, the time series data for the deep wells provide an
independent measure of the quality of the data because all
samples were collected, preserved, and analyzed in exactly
the same fashion. At all but Site B (Fig. 1c), these deep wells
tapped sandy aquifers with a characteristic orange-brown
color that is typically associated with low sediment As con-
centrations (Horneman et al., 2004; Zheng et al., 2005). At
Sites A, C, E, F, and G, the redox potential (ORP) of ground-
water was less negative than in shallow aquifers (Table 1).
Conductivity measurements and SMC data indicated that
deep groundwater was fresher than in shallow aquifers at
Sites A, B and C, but saltier at Sites E, F and G (Table 1). The
elevated conductivity of deep groundwater at Sites E, F and G
reflected primarily high concentrations of Na and Cl (Table 1).

The SMC concentration in the deepest well at all 6 sites
was the most stable property measured over the monitoring
period, with RSDs usually b9% (Table 1 and Fig. 5). Concen-
trations of As in the deepest wells at Sites A, B, C, E, and F,
were stable and low at 1±0.7 μg/L. The levels of As concen-
tration were somewhat higher at B-41 m (21±2 μg/L As),
B-53 m (17±1 μg/L As); and G-52 m (7±0.6 μg/L). There
was a statistically significant decline in As concentration
over time of −2 and −1 μg/L yr−1 at B-41 m and B-53 m,
respectively (Table 2). Concentrations of P ranged from 4
to 10 μmol/L in the deepest well from all 6 sites and varied
within 30% (Fig. 5). Little systematic variation over time
was observed in the deep aquifers, with the exception of a
large increase in Fe and SO4 concentration in C-53 m that
Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
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steady rise in SO4 concentration from b0.003 to 37 μmol/L
in the deep aquifer at site A over the entire monitoring
period (Table 2).

4. Discussion

4.1. Fluctuations in major ion compositions and groundwater age

Groundwater ages in deep aquifers at sites A and B are 10–
1000 times higher than in the corresponding shallow aquifers
of Araihazar (Zheng et al., 2005; Stute et al., 2007). Radio-
carbon ages of dissolved inorganic carbon fromwells C-53 m,
F-58 m, and G-52 m were 10,700±55, 6240±30, and 3620±
35 years, respectively (Dhar, 2006). These observations show
that the deep aquifers in Araihazar contain groundwater that
was recharged centuries to thousands of years ago.

Not surprisingly, the variability of groundwater composi-
tion for all major ion constituents that were quantified was
lower (i.e., generally b10% for SMC and Cl; Table 1) than in any
of the shallow aquifers. The age of deep groundwater is higher
and, therefore, flow lines are likely to be longer, and dis-
persive mixing may have smoothed out any initial temporal
fluctuations.

The shallow aquifers at the 6 sites that were monitored
over a period of 2–3 years were divided into 2 groups on the
basis of 3H/3He ages of groundwater collected from the same
set of wells (Stute et al., 2007). In one group comprised of Sites
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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C and F, groundwater 3H/3He ages remain b5 years down to a
depth of ~14 m, whereas 3H/3He ages already exceed 20 years
at the same depth at Sites A, B, E, and G. Sites C and F are also
the only 2 sites where the 3H/3He age of groundwater from
the shallowest well was b1 year. The rapid recharge of shal-
low aquifers at Sites C and F indicated by the 3H–3He data is
probably linked to the upward extension, almost to the sur-
face, of sandy deposits at these two sites (van Geen et al.,
2006; Aziz et al., in revision; Weinman et al., in press). At
Sites A, B, E, and G, instead, recharge appears to be limited by
the presence of a thicker layer of silt or clay that capped the
local sandy aquifers. These hydrogeological constraints are
used next to interpret the behavior of relatively conservative
constituents of groundwater, i.e., SMC, Na, and Cl.

It is probably not a coincidence that variations in the
composition of groundwater e.g. SMC, Na, and Cl, are par-
ticularly pronounced (up to 40%) and go beyond in the shal-
low monitoring wells at the Site C where sandy deposits
extend to the surface (Fig. 3 and Table 1). What is less clear is
to what extent these variations reflect vertical advection of
recently recharged water, lateral motion of groundwater that
is heterogeneous in composition, or a combination of both. At
Site C, a progressive deepening of a front containing elevated
Na and Cl levels during and following the 2003 flood is
consistent with at least some vertical penetration to ~11 m
(Fig. 6). At present, we cannot rule out the possibility that the
changes in NaCl were due to leakage of flood water along the
well casings, although that seemed unlikely given the sys-
tematic pattern of the multi-elements depth profiles obtained
at different time post-flood (Fig. 6). Elevated concentrations of
NaCl have previously been linked to human waste because
large quantities of salt aremobilized and added to floodwater
in densely populated areas where sanitation is limited to pit
latrines (Ahmed et al., 2004). A sizable trench (~10 m wide)
that presumably could collect latrine runoff is located next to
Site C and separates a vegetable field from the village.

At site F, despite similar depositional settings, the sea-
sonal cycle of variations in Na (as SMC) and Cl concentra-
tions is considerably muted compared to Site C and lacks
the response to the 2003 flood (Fig. 3). Site F is located in a
village that is built up to higher elevation than the surround-
ing area and has no such trench or pond next to it. This may be
why Na and Cl concentrations do not vary as much as Site C.

Some fluctuations in major ion concentrations were also
observed at clay/silt covered Sites A and B. The most notable
variation linked to seasonal water level fluctuation was ob-
served only in shallowest wells (Figs. 3, 5 and Table 1). The
3H/3He ages of the groundwaters from shallowest wells at
these sites are also b5 years, although the groundwater age
rapidly increases beyond the depth of these wells (Stute et al.,
2007). Given the higher ages, and the capping of shallow
aquifers around Sites A and B by relatively impermeable
surface sediment, it seemed more plausible to attribute the
variations in groundwater composition to lateral motion of
groundwater of heterogeneous composition. In a 3-dimen-
sional groundwater flow model developed for Araihazar,
reversal of lateral flow directions between wet-dry seasons
are found, in addition to flow path oscillations driven by the
seasonal variation of the groundwater table (Horneman,
2006). The oscillation and reversal of flow implies that older
groundwater with different compositions can mix on seaso-
Please cite this article as: Dhar, R.K., et al., Temporal variability
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nal time scale without influencing the residence time.
Seasonal patterns in major ion concentrations similar to the
one observed in the shallowest well at Site A, though not
necessarily in phase, were previously reported for two
shallow existing wells in entirely different sampling locations
in Araihazar (Cheng et al., 2005). Whereas maxima and
minima in major ion concentrations for shallow wells in the
area often do not coincide, the seasonal pacing of the
fluctuations might still be linked to variations in water level
of the nearby stream (Figs. 2, 3 and 4) that in turn modulate
an oscillating lateral flow field.

In contrast to the shallowest wells at Sites A, B, C, and
F, fluctuations in groundwater composition were limited at
G-6 m (Fig. 3). At this location, the 3H/3He age of ground-
water in even the shallowest wells is N10 years (Stute
et al., 2007). Variations at E-5 m, also with 3H/3He age of
~10 years, on the other hand, were comparable to Sites A
and B but clearly not as stable as at G-6 m (Fig. 3).

In summary, the major ion compositions of deep aquifer
groundwater is much less variable than the shallow aquifer
groundwater due to a much longer residence time. Within
the shallow aquifer, flooding can sometimes but not always
alter major ion compositions at locations where sandy
sediment extended to the surface. More importantly, fluctua-
tion of major ion occurred on shorter time scale, and some-
times seasonal time scale, for shallow groundwater with
ages N10 years, consistent with a flow regime with oscillation
of horizontal flow driven by fluctuating seasonal hydraulic
gradient.

4.2. Decoupling between variations in redox-sensitive cons-
tituents and as

Perhaps the greatest surprise that resulted from this study
is that variations in groundwater As concentrations were
considerably muted in comparisonwith other redox-sensitive
constituents, such as Fe, Mn and SO4 in many wells from
multiple sites, including both the low-As deep aquifers and
high-As shallow aquifers (Fig. 5). Considerable variations of
Fe and SO4, and to a lesser extent Mn, were observed in
the deep aquifer where major ions and As remained stable
(Fig. 5). In the case of deep aquifers, such decoupling is
consistent with low concentrations of mobilizable As in deep
aquifer sediment (Zheng et al., 2005). In such conditions, even
if microbially-mediated reduction of Fe oxyhydroxides
occurred, the release of Fe could be decoupled from As due
to either re-adsorption or the lack of a pool of mobilizable As
in the sediment (van Geen et al., 2004).

Like the deep aquifer, the temporal patterns of concentra-
tions of As, vs. Fe, Mn, and SO4 can also be decoupled in
shallow aquifers. One example of such decoupling is the three
shallowmonitoring wells (C-5 m, C-8 m and C-11 m) at sandy
Site C where major ion concentrations and redox-sensitive
elements were strongly affected by the 2003 flood whereas
the depth profiles of As concentrations did not change (Fig. 6).
Only in the shallowest well C-5 mwas the concentration of As
affected by the flood evident when the relative change was
examined (Fig. 2), although the As level returned to pre-flood
level approximately 6-months after flooding both in relative
change (Fig. 2) and absolute level (Fig. 6). Whereas slight
decrease in As concentration is consistent with dilution from
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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flood water, it is not what might have been expected from the
dissolution of mineral oxides suggested by the rise in Fe and
Mn concentrations (Fig. 6). The ability of the shallow aquifer
at Site C to maintain a relative constant concentrations of
groundwater As is not surprising in light of recent finding that
partitioning between solute and solid As in shallow aquifer
has a fairly constant coefficient based on a regional study (van
Geen et al., in press). In this scenario, groundwater is rapidly
equilibrated with sediment such that it is the sediment As
level that controls the groundwater As concentration. Such
decoupling was also evident at F-6 m (Fig. 2, Table 1) where
consistently low As concentrations were observed over the
monitoring period even though both major ions and redox-
sensitive elements exhibited a strong seasonal pattern (data
shown in Supplementary figure). What is the implication of
limited temporal variation of As despite the significant var-
iation of redox sensitive ions such as Fe and Mn? Considered
as a whole, not only it reinforces the notion that there is
significant decoupling between themobilization of As and the
redox state of an aquifer (Horneman et al., 2004; van Geen
et al., 2004; Polizzotto et al., 2005; van Geen et al., 2006),
but also it supports a rapid equilibrium between solute
and solid As in the aquifer (van Geen et al., in press). Finally,
strong temporal decoupling between As and Fe, Mn and S in
the shallowest wells (5–7 m) from our sites imply that the
chemical compositions of recharge water could be highly
heterogeneous both spatially and highly variable temporally.

4.3. Trends in groundwater as in the shallow aquifer

Stute et al. (2007) have pointed out on the basis of paired
measurement in groundwater from the same set of shallow
monitoring wells (b20 m) that there is a surprisingly linear
relationship between As concentrations and groundwater age
across a wide range of settings (Table 1). It is noted that the
deepest wells of most sites including A-15 m, B-19 m, E-14 m,
F-19 m, G-14 m are affected by mixing, therefore were not
included in regression analysis (Stute et al., 2007). The
simplest interpretation of this linear relationship is that the
release rate of As is relatively constant at ~20 μg/L/year in the
shallow aquifers of Araihazar. This rate appears to be in-
sensitive to, and therefore decoupled from, the redox state of
the aquifer. This steady release of As under a wide range of
conditions is consistent with the observation that concen-
trations of major ions or redox-sensitive constituents are
not necessarily linked to variations in dissolved As temporal-
ly. Taken together, these observations imply that the spatial
heterogeneity of As concentration in shallow aquifers is con-
siderably less than that of major ions or redox-sensitive
constituents in groundwater. However, the reasons for the
inferred heterogeneity in major ion and redox sensitive cons-
tituents relative to As remain unclear.

If groundwater As concentrations remain constant over
time, then a steady rate of As release (e.g. source) would
require that As is either discharged from the aquifer or
immobilized (e.g. sink) to sediment for maintaining a steady
state. If groundwater As increases over time, then there must
be a surplus of As, or vice versa if groundwater As decreases
over time. We recognize that our time series data span only 2
to 3 years and it may therefore be premature to draw any firm
conclusions. But, systematic differences of trends are ob-
Please cite this article as: Dhar, R.K., et al., Temporal variability
Araihazar, Bangladesh, Journal of Contaminant Hydrology (2008)
served at different sites. At Sites F and C where sandy sed-
iment extends to surface, there is little trend in groundwater
As (Table 2), suggesting no net loss or gain of As. Although
F-19 m showed a decline of 21±12 μg/L yr−1, it was below a
silty layer with lower hydraulic conductivity and thus prob-
ably more akin to old meander environment at Sites A and
B (Fig. 1a). Clay/silt covered Sites A and B located in old-
er meanders N6000 years old (Weinman et al., in press)
showed a systematic decline over time of groundwater As in
6 out of 9 shallow wells (Table 2). This implies that such
settings presently experience a net loss of As. Similarly clay/
silt surface cover Sites E and G located in a young flood plain
b4000 years old (Weinman et al., in press) showed increase
of As over time in 2 out of 8 shallow wells. This implies that
such setting has a net gain of As.
of groundwater chemistry in shallow and deep aquifers of
, doi:10.1016/j.jconhyd.2008.03.007
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Why does some aquifer system gain As, some lose As
and yet some with no net change? The reasons for much of
this remain unclear, but sites with net loss of As located on
older meanders is consistent with the notion that flushing
over time may gradually decrease the inventory of As in the
Holocene aquifer but that process will take thousands of years
if not longer (McArthur et al., 2001; Stute et al., 2007; van
Geen et al., in press). The increasing trends observed in Sites E
and G suggest that near surface mobilization and subsequent
transport (Polizzotto et al., 2005) may have provided a fresh
source of As to the aquifer in very young flood plain.

4.4. Coupled and decoupled behavior of P and As

Arsenic in its oxidized form is a chemical analog for phos-
phate. For this reason, parallel behaviors or interactions be-
tween these two constituents are frequently invoked. Arsenic
in aquifers of Araihazar, however, is predominantly present
in groundwater in the As(III) form (Zheng et al., 2004). In
older groundwater (N5 years), As was observed to be co-
variance of P in time series data (Fig. 7). When the deviation
of P from the average P concentrations over time (ΔP) was
plotted over the deviation of As from the average As con-
centrations over time (ΔAs), a ΔP: ΔAs atomic ratio of 9.6
was found (R2=0.55, n=181, Fig. 7b), nearly identical to the
ratio (9.3) established independently by using P:As ratio
in these wells directly (Fig. 7a). Together these suggest a
similar release mechanism for As and P in the older (N5 years)
shallow groundwaters.

Why then is there more P relative to As in relatively young
(b5 yr) shallow groundwaters? P concentrations are high not
only in young water at sandy Site C (but not F), but also in
young water tapped by the shallowest well at Sites A and B
(Table 1). One possibility is that P is supplied from surface
water recharge whereas As is not. For instance, P concentra-
tions increased by ~20 μmol/L at both C-5 m and C-8 m after
the 2003 flood (Fig. 6). These observations confirm that As
was probably not derived from recharged water but that P
was. Alternatively, the increase of P post-flood at both C-5 m
and C-8 m result from chemical reactions that liberate P from
sediment, but those reactions did not influence As level.

5. Conclusions

Groundwater age is a key variable influencing the tem-
poral variability of groundwater chemistry in shallow Holo-
cene aquifers and deeper aquifers of Araihazar. The principal
findings of the study are:

• In shallow and young (b3.5 years) groundwater, the var-
iability of As concentrations over 2–3 years is much more
muted when compared to that of major ions and redox
sensitive constituents. The decoupling between As and
redox sensitive constituents under such conditions reflects
the greater availability and mobility of Fe in the shallow
sediment compared to As.

• The concentration of As in shallow and older groundwater
(N3.5 years) as well as deep groundwater in deeper aquifers
that is thousands of years old, is stable over time despite
having considerable variability of redox sensitive constitu-
ents. The reason for the decoupling remains unclear but
Please cite this article as: Dhar, R.K., et al., Temporal variability
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may result from relatively constant solute to solid As par-
titioning observed in Bangladesh.

• Trends in groundwater As concentration over the entire
monitoring period of 2–3 years may be governed by sed-
iment geology and its effect on the groundwater flow
regime. Older sedimentary aquifers (6000–10,000 years)
is experiencing a net loss of As, consistent with gradual
flushing of As from the aquifer.
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