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A B S T R A C T

Drinking water manganese (WMn) is a potential threat to children’s health due to its associations with a

wide range of outcomes including cognitive, behavioral and neuropsychological effects. Although

adverse effects of Mn on cognitive function of the children indicate possible impact on their academic

achievement little evidence on this issue is available. Moreover, little is known regarding potential

interactions between exposure to Mn and other metals, especially water arsenic (WAs). In Araihazar, a

rural area of Bangladesh, we conducted a cross-sectional study of 840 children to investigate associations

between WMn and WAs and academic achievement in mathematics and languages among elementary

school-children, aged 8–11 years. Data on As and Mn exposure were collected from the participants at the

baseline of an ongoing longitudinal study of school-based educational intervention. Annual scores of the

study children in languages (Bangla and English) and mathematics were obtained from the academic

achievement records of the elementary schools. WMn above the WHO standard of 400 mg/L was

associated with 6.4% score loss (95% CI = �12.3 to �0.5) in mathematics achievement test scores,

adjusted for WAs and other sociodemographic variables. We did not find any statistically significant

associations between WMn and academic achievement in either language. Neither WAs nor urinary As

was significantly related to any of the three academic achievement scores. Our finding suggests that a

large number of children in rural Bangladesh may experience deficits in mathematics due to high

concentrations of Mn exposure in drinking water.

� 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Health effects of chronic manganese (Mn) exposure in both
occupational (e.g. welding) and environmental settings are
reported in adults. In children, exposure to Mn is likely from
environmental sources with exposure levels lower than in adults.
Despite lower levels of exposure, several studies report cognitive,
neurobehavioral and neuropsychological health effects in children
(Bouchard et al., 2007, 2011; Ericson et al., 2007; Khan et al., 2011;
Kim et al., 2009; Menezes-Filho et al., 2009; Takser et al., 2003;
Wasserman et al., 2006; Wright et al., 2006). The memory deficits
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that often accompany exposure in both children (He et al., 1994;
Wasserman et al., 2006) and adults (Bowler et al., 2007; Chang
et al., 2009, 2010; Lucchini et al., 1995; Lucchini and Zimmerman,
2009) suggest consequences for children’s academic achievement.
While cognitive ability is certainly related to academic achieve-
ment, early-school academic achievement may be more predictive
of functional capacity such as success in later stages in school
(Duncan et al., 2007; Hooper et al., 2010; Romano et al., 2010).

Although lowered academic achievement in languages, math,
science and other disciplines has been related to children’s
exposure to lead (Chandramouli et al., 2009; Miranda et al.,
2007; Zahran et al., 2009) associations between Mn exposure and
measures of children’s school performance have less often been
reported. In an ecological study in China, Mn-exposed children
were found to have significantly lower school performance in
mathematics and language (Zhang et al., 1995) compared to
children in a non-exposed village.

http://dx.doi.org/10.1016/j.neuro.2011.12.002
mailto:prf1@columbia.edu
http://www.sciencedirect.com/science/journal/0161813X
http://dx.doi.org/10.1016/j.neuro.2011.12.002
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In Bangladesh, especially in rural areas, people rely on
groundwater as the only source of fresh drinking water. However,
both naturally occurring Mn and arsenic (As) in groundwater have
been recognized as threats to rural public health. Since 2000, a
team of health, earth and social scientists at Columbia University
has carried out a large collaborative projects in Araihazar,
Bangladesh. In this region, independent health effects of both
Mn and As on children’s intelligence have been documented
(Wasserman et al., 2004, 2006, 2007).

This study examines the associations between Mn and/or As
and academic achievement among 8–11 year old children with
wide ranges of As and Mn exposures. We also examine the joint
effect of Mn and As on children’s academic achievement to explore
possible effect modification (Kim et al., 2009; Wright et al., 2006).

2. Methods

2.1. Overview

This cross-sectional study is a component of an ongoing,
prospective elementary school-based intervention study for
lowering arsenic exposure from drinking water in Araihazar,
Bangladesh. The study area is adjacent to a previously described
study area for a larger cohort study of adults (Ahsan et al., 2006)
consisting of three unions of Araihazar upazilla located about
25 km southeast of the capital city Dhaka. Araihazar has an area of
183 km2 and contains 12 unions, the smallest administrative units
in Bangladesh, which each consists of 10–15 villages. Every family
in Araihazar typically lives in a house made of tin, mud, hay and in
some cases concrete. Several houses are clustered together to
form a bari representing a small segment of the community
(sometimes an extended family). Every family generally relies on
a household well (also known as tubewell) to get groundwater and
uses it for drinking and cooking. We report on 840 children
enrolled in an ongoing school intervention study at 14 elementary
schools.

2.2. Selection of schools and participants

We initially identified 27 elementary schools in three unions
(Haizadi, Uchitpur and Khagkanda) of Araihazar within reasonable
travel distance to the field clinic where our project offices are
located. Schools were selected for participation based on three
eligibility criteria: (1) ten or more age-appropriate children (8–11
years) in each classroom, (2) all teachers agreed to participate in an
ongoing intervention study and (3) schools agreed to provide us
with the academic performance records of the participating
children. We identified 14 schools in the three unions that met
the selection criteria and subsequently recruited children from
these schools.

To begin the recruitment, our field staff first visited each of the
14 schools and obtained a list of all 1925 enrolled students with
their addresses. Children of these 14 schools came from 30
different villages of three unions. We conducted home visits to
enroll the children in the study. We also made sure that we
recruited a minimum of 9–12 children from each of these 30
villages. Homes of 952 potential participants were visited,
continuing until our targeted sample size of roughly 800 children
was enrolled. Inclusion criteria restricted enrollment to children
aged 8–11 years who attended school in an age-appropriate grade,
had no known physical disability or chronic illness, and were not
twins. Of the 952 children whose families were visited for
eligibility review, we were unable to locate 75, either because
the family had moved (n = 12) or because no one was available at
the time of the visit (n = 63). Twenty-seven children were older
than the specified age, and 10 attended school only infrequently.
Altogether, 840 children agreed to participate. By design, measures
of urinary As (UAs) were available on half the sample (n = 420),
whereas measures of water As and Mn(WAs, WMn) from the home
well were available on all.

2.3. Procedure

Prior to conducting this study, we secured approval from
Institutional Review Boards at Columbia University Medical Center
and the Bangladesh Medical Research Council, and obtained
written informed consent from parents and school-teachers, as
well as child assent. Once parental consent and child assent were
obtained, the field team collected socio-demographic information
during a structured interview and observation in home visits. At
this time, we also identified the home well for each child that was
the source of primary drinking water for the child’s family. Water
sample from this home well and child’s urine sample were
collected. Height, weight, head and arm circumferences of each
child were also measured during this visit. The field team visited
the schools and subsequently met with teachers to obtain the
performance records of each child in the most recent annual
school-wide district tests in both language (Bangla and English)
and mathematics. Teachers were blind to children’s household
well As and Mn status.

2.4. Measures

2.4.1. Teacher characteristics

Teachers were asked questions related to their experience,
including their age, number of years teaching and their educational
qualifications.

2.4.2. Child characteristics

Socio-demographic measures included information on paternal
and maternal education and father’s occupation. Characteristics of
the physical home environment were measured by noting the type
of construction (roof, wall and floor) of the house and availability of
television and radio.

2.4.3. Well water measurement

As previously described (Cheng et al., 2004; Hafeman et al.,
2005) well water samples from each participant’s household
drinking water source were collected in 20-mL polyethylene
scintillation vials. Water samples were acidified with high-
purity Optima HCl for at least 48 h before analysis to ensure re-
dissolution of any iron oxides that might have precipitated (van
Geen et al., 2007). Water samples were then diluted 1:10 in a
solution spiked with 73Ge and 74Ge for internal drift correction
and analyzed for As and Mn by high-resolution inductively
coupled plasma mass spectrometry (HR ICP-MS). Further details
on field sampling and laboratory analysis procedures are
described elsewhere (Cheng et al., 2004; van Geen et al.,
2005). For As, the detection limit of the method was typically
<0.02 mg/L, estimated by multiplying the As concentration
corresponding to the blank by a factor of 3. The long-term
reproducibility determined from consistency standards included
with each run averaged 4% (1-sigma) in the 40–500 mg/L range.
For Mn, the detection limit of the method is typically <0.02 mg/L
and the long-term reproducibility averaged 6% in the 0.2–
2.0 mg/L range.

2.4.4. Urinary measurements

As previously described (Wasserman et al., 2006), UAs was
measured by graphite furnace atomic absorption spectrophotom-
etry (GFAA) using a Perkin-Elmer Analyst 600 system (Nixon et al.,
1991). UAs levels were adjusted for creatinine concentrations,
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which were analyzed by a colorimetric method based on Jaffe’s
reaction (Heinegard and Tiderstrom, 1973).

2.5. Outcome assessment: academic achievement

Elementary school children are evaluated in three disciplines in
Bangladesh: Bangla, English as a second language, and mathematics.
We obtained the annual scores from the academic achievement
records of the schools. These scores are based on national uniform
tests given to students in participating public and private schools.
Scores are reported as percent correct and range from 0 to 100.
Language tests evaluate children’s memory skills; for example,
‘‘Write the first four sentences of rhyme ‘X’’’, ‘‘Translate the following
sentences into English’’, and ‘‘When was Mr. Y (a famous writer)
born?’’ In contrast, mathematics test questions evaluate analytical
skills and problem solving abilities, for example, calculations relying
on addition and subtraction, or word problems.

2.6. Statistical analyses

Preliminary analyses found the distributions of both WMn and
WAs to be skewed and the logarithmic transformations were used
in the analyses. Summary statistics were calculated to describe the
sample. Spearman correlation coefficients were used to estimate
bivariate association between markers of exposures. To account for
correlations in children’s academic achievement scores when they
were with the same primary class teacher, we employed linear
models using repeated measures. Models were estimated both
with and without adjustment for potential confounders. Children’s
academic achievement test scores with the same primary class
teacher tended to be correlated (because of the clustering of
children within each class teacher) and the GEE models accounted
Table 1
Sample characteristics of study population (N = 840).

Variables % (n) 

Male 47.1 (396)

House construction

Biomass/Hay/Mud 2.3 (19)

Corrugate 91.4 (768)

Concrete 6.3 (53)

School-grade

Second 160 (19.0)

Third 397 (47.3)

Fourth and fifth 283 (33.7)

Maternal education

No education 53.6 (450)

Elementary 31.8 (267)

Middle school and higher 14.6 (123)

Paternal education

No education 48.7 (409)

Elementary 29.3 (246)

Middle school and higher 22.0 (185)

Child age (years) 

Months attending school 

BMI (kg/m2) 

Head circumference (cm) 

Teachers’ experience (years) 

Teachers’ age (years) 

Water As (mg/L) 

Water Mn (mg/L) 

Urine As (mg/L) 

Urine creatinine (mg/dL) 

Urine As (mg/g creatinine) 

Bangla language score (n = 830) 

English language score (n = 831) 

Mathematics score (n = 830) 
for within teacher correlations. To identify the control variables,
we first identified variables from the literature associated with
child’s academic achievement. Second, we examined whether the
estimated regression coefficient relating exposure to outcome
changed by more than 0.5 standard error after excluding the
potential confounder from the model. The final model included
covariates which met this criterion.

WMn was also categorized into five categories, one below WHO
standard (i.e. 400 mg/L) and four for higher exposure levels with
approximately equal numbers of subjects in each. We repeated the
models using dummy variables to describe the categorization.
When the coefficients of adjacent categories were similar, the
categories were collapsed to yield parsimonious models. We also
tested for WAs by WMn interaction by including an interaction
term between WAs and WMn in the full model. Finally, we
estimated a piece-wise linear function with an a priori knot at
WMn of 400 mg/L to examine the associations below and above the
safe water standard.

3. Results

3.1. Sample characteristics

Characteristics of included children are described in Table 1.
More female students than male students were included. On
average, children had attended school for approximately a lifetime
total of 30 months, although they were currently attending classes
as second through fifth graders. About half the parents had no
formal education. Participants were exposed to expectably high
levels of As and Mn in drinking water: mean WAs and WMn
concentrations were 13 and 3 times the WHO standards of 10 and
400 mg/L, respectively. On average, teachers had 10 years of
Mean (SD) Median Range

9.3 (0.8) 9.3 8.0–11.0

32.8 (8.3) 31.0 16.0–48.0

14.2 (1.2) 14.2 10.8–19.1

49.2 (1.5) 49.3 45.3–55.0

13.0 (7.9) 15.0 2.0–34.0

36.7 (7.6) 37.0 23.0–56.0

119.5 (147.5) 81.9 0.1–1263.2

1387.9 (866.3) 1301.6 10.0–5710.1

138.9 (133.0) 93.0 6.0–910.0

44.3 (34.0) 35.1 4.1–251.3

368.0 (307.9) 271.9 47.4–2589.7

45.1 (19.1) 44.0 0.0–93.0

45.9 (20.3) 46.0 0.0–96.5

48.4 (21.0) 47.0 0.0–99.0



Table 2
Model covariates and academic achievement scores (N = 840).

Bangla language score

b (95% CI)

English language score

b (95% CI)

Math score

b (95% CI)

School-grade

Fourth/fifth vs. second grade �7.87 (�13.26 to �2.46)** �4.90 (�10.71 to 0.92) �19.84 (�25.50 to �14.17)****

Third vs. second grade �3.41 (�8.06 to 1.25) �3.70 (�9.81 to 2.40) �10.33 (�15.29 to �5.38)****

Maternal education

Middle-school or higher vs. No education 5.80 (2.59 to 9.01)** 7.61 (3.62 to 11.61)*** 6.24 (2.72 to 9.77)***

Elementary vs. No education 1.36 (�1.52 to 4.23) �0.78 (�3.37 to 1.80) 1.51 (�1.17 to 4.19)

Paternal education

Middle-school or higher vs. No education 4.20 (0.57 to 7.81)* 4.74 (0.33 to 9.61)* 4.28 (�0.46 to 9.03)+

Elementary vs. No education 1.63 (�1.06 to 4.32) 2.35 (�0.57 to 5.28) 1.77 (�0.72 to 4.26)

Head circumference (cm) 1.51 (0.79 to 2.22)**** 0.79 (�0.05 to 1.62)+ 1.18 (0.40 to 1.96)**

+ p < 0.08.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
**** p < 0.0001.
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teaching experience. The average test percentage scores for each of
the three academic areas were approximately 50%.

3.2. Correlations among measures of exposure and outcomes

We found the correlation between WAs and urinary As (UAs)
positive and statistically significant (Spearman correlation coeffi-
cient r = 0.68, p < 0.0001). The correlation between WAs and WMn
was also statistically significant (r = 0.22, p < 0.0001). The three
measures of academic achievement were also positively correlated
(r’s between 0.70 and 0.75, all p < 0.0001).

3.3. Associations between sociodemographic factors and academic

achievement

Associations between sociodemographic factors (i.e. school-
grade, head circumference, maternal education and paternal
education) and all academic outcomes were in the expected
directions (Table 2). Fourth and fifth grade students had lower
Table 3
Adjusted mean academic achievement scoresa for the categories (pentiles) of water m

WMn categories (mg/L) Bangla language score

Adjusted mean (se)

�400 49.8 (3.1) 

401–1000 48.1 (2.1) 

1001–1440 49.0 (2.1) 

1441–2000 48.1 (1.6) 

2001–6000 48.8 (2.1) 

a Means adjusted for log-transformed WAs, school-grade, maternal education, paterna

in rating the children.

Table 4
Unadjusted and adjusted associations between water arsenic and water manganese an

Exposure variables (mg/L) Bangla language score

b (95% CI)

Adjusted only for the other element

Water As (dichotomized) �2.33 (�5.23 to 0.61) 

Water Mn (>400 vs. �400) �0.16 (�5.45 to 5.12) 

After adjustment for additional socio

Water As (dichotomized) �1.71 (�4.77 to 1.34) 

Water Mn (>400 vs. �400) �1.01 (�6.14 to 4.12) 

a Models additionally adjusted for school-grade, maternal education, paternal educati

the children.
+ p < 0.06.
* p < 0.05.
academic scores than second graders and the difference was
statistically significant. Achievement test scores increased as head
circumference increased. Children whose mothers and fathers
attended middle school or beyond had significantly higher
achievement test scores than those whose parents had no formal
schooling. No other sociodemographic variables were associated
with the outcomes when added to the models.

3.4. Associations between exposure markers and academic

achievement

The covariate and WAs adjusted mean test scores by WMn
categories were similar for WMn > 400 mg/L, suggesting a
threshold effect (Table 3). High exposure categories of WMn were
therefore combined. Covariates and WMn adjusted mean test
scores in all WAs categories were similar indicating that WAs was
not related to any of the three test scores. The results also
suggested a dichotomization of the exposure variables on the basis
of the WHO standards. Table 4 presents the associations between
anganese (N = 840).

English language score

Adjusted mean (se)

Math score

Adjusted mean (se)

51.4 (3.2) 58.9 (3.7)

46.9 (1.9) 51.7 (1.9)

49.3 (2.4) 52.8 (2.1)

49.3 (1.7) 53.5 (1.7)

48.8 (2.4) 53.0 (2.1)

l education and head circumference and controlling for within-teacher correlations

d children’s academic achievement scores (N = 840).

English language score

b (95% CI)

Math score

b (95% CI)

�1.57 (�5.11 to 1.98) 0.38 (�3.75 to 4.50)

�2.33 (�6.93 to 2.24) �6.67 (�13.42 to 0.25)+

-demographic featuresa

�0.73 (�4.32 to 2.86) 0.56 (�2.98 to 4.10)

�2.66 (�7.16 to 1.83) �6.37 (�12.27 to �0.46)*

on and head circumference and controlling for within-teacher correlations in rating



K. Khan et al. / NeuroToxicology 33 (2012) 91–97 95
the exposures and the children’s academic achievement test scores
with dichotomized WAs and WMn.

3.4.1. Mathematics achievement score

When WMn is modeled categorically, the adjusted regression
model showed that children in all four high WMn categories lost
points in their math test scores when compared with the children
of the lowest exposure category (WMn < = 400 mg/L). In this
model, estimated adjusted b values for the four high exposure
categories were �7.1, �6.4, �5.5 and �5.9 (p = 0.03–0.10). When
dichotomized WMn was put in the model WMn above 400 mg/L
was associated with 6% loss, 95% CI = (�12.27 to �0.47) in
mathematics achievement test score, adjusted for WAs and other
variables. When we put WMn as a continuous variable in a similar
model log-transformed WMn also predicted loss of mathematics
score (b = �1.7, p = 0.07). Neither WAs nor UAs was significantly
related to mathematics achievement score (p < 0.05), with or
without adjustment for other covariates. The results from the
spline regression models confirmed these associations.

3.4.2. Language achievement scores

High WMn (>400 mg/L) was also associated with a 1 and 3%
reductions in Bangla and English mean test scores after adjustment
for covariates, respectively, but these losses were not statistically
significant (p > 0.24). Both WAs and UAs were unrelated to
language test scores, before or after adjustment (data not shown).
Results from the spline regression models confirmed these results.

A linear model with repeated measures was used to test
whether the points lost in mathematics and language achievement
due to WMn exposure were different. For these analyses, within
child correlations in the test scores were modeled as nuisance
parameters. The point loss in mathematics test scores due to high
WMn (>400 mg/L) was greater than the loss in either language test
scores (p < 0.01) and this difference was statistically significant.
No statistically significant interactions between WMn and WAs
and any outcome measure was found.

4. Discussion

We found a statistically significant negative association
between WMn (dichotomized at the WHO standard) and
mathematics achievement test scores that persisted upon adjust-
ment for sociodemographic variables, such as parental and
maternal education. WMn was negatively associated with
language scores although the associations were not statistically
significant. High WMn (>400 mg/L) was more strongly associated
with mathematics achievement as compared with language
achievement and this difference was statistically significant.
Neither UAs nor WAs were associated with any of the three
achievement scores.

In Bangladesh, the teaching of Bangla and English is not based
on classroom interactions. A reading–memorization–writing
approach is traditionally practiced, especially in rural areas.
Teachers and students read and recite stories, poems and essays
in the classroom throughout the year. At the end of the school-year,
students are tested on their memorization skills by answering both
short and descriptive questions about these rhymes, poems and
essays. Students do not need to think critically, rather they are
asked to remember specific parts of the materials they have read
and to reproduce that content during testing. Therefore, language
tests contain few questions that require working memory. This
process of memory retrieval is much faster, automatic and has very
little or no dependence on working memory (Ashcraft and Krause,
2007). In contrast, in teaching mathematics children are required
to make greater use of analytical skills, abilities that are necessary
for solving the types of problems that appear in the annual
mathematics test. Mathematics test problems require strategy-
based solutions which are heavily dependent on working memory
(Ashcraft and Krause, 2007). Our study results are consistent with
the literature that showed poor working memory as a predictor of
mathematics achievement (Bull and Scerif, 2001; Bull et al., 2008;
Geary et al., 2004). More specifically working memory is a strong
predictor of arithmetic skills (Andersson, 2008), which are the
predominant forms of mathematics learning in Bangladeshi
elementary school system. Although working memory predicts
other types of academic achievements such as language skills (Bull
et al., 2008) differences in the way language and mathematics
contents are taught and assessed may explain the greater impact of
WMn exposure on mathematics achievement.

4.1. Mn neurotoxicity and working memory

Animal studies suggest that certain neurotransmitters have
particular impact on memory and learning, including glutamate, g-
amino butyric acid (GABA), dopamine, acetylcholine, serotonin and
norepinephrine (Myhrer, 2003). Animal models suggest that Mn
affects neurotransmitters in the dopaminergic and glutamatergic
systems (Tran et al., 2002) as well as serotonin binding (Velez-
Pardo et al., 1995). For example, animals dosed with various
concentrations of Mn postnatally commit more errors and exhibit
learning deficiencies in radial arm mazes compared to control
animals (Kern et al., 2010). Animal studies also support the view
that brains of young animals have the ability to achieve higher Mn
concentrations than those of adults (Dorman et al., 2000; Moreno
et al., 2009). Animal studies have identified brain compartments,
such as basal ganglia, prefrontal cortex, cerebellum and hippo-
campus where Mn primarily accumulates (Bock et al., 2008;
Guilarte et al., 2006; Rose et al., 1999; Schneider et al., 2009;
Yamada et al., 1986) resulting in detrimental effects on working
memory processes and learning. Other research with non-human
primates has documented similar impact of Mn on both spatial and
non-spatial working memory (Schneider et al., 2006, 2009).

Importantly, Mn exposure results in similar types of deficits in
occupational epidemiological studies of welders, where multiple
investigations consistently demonstrate detrimental effects on
immediate, short-term and long-term memory functions (Bowler
et al., 2007; Chang et al., 2009, 2010; Lucchini et al., 1995, 1999).
Working memory contributes to children’s learning capacity.
Compared to IQ measures, working memory better predicts
academic achievement and overall learning (Alloway and Alloway,
2010). In a longitudinal study, poorer working memory skill in
kindergarten children was associated with lower academic
attainment in reading, spelling, mathematical reasoning and
number operations at age 10–11 years (Alloway and Alloway,
2010). Recently, in a separate cohort of Bangladeshi children, we
observed decreased WISC-IV working memory scores in 10 year
old children drinking from household wells with elevated levels of
WMn (Wasserman et al., 2011).

4.2. As and academic achievement

We did not observe associations between measures of As
exposure and academic achievement. Toxicity of As occurs through
oxidative stress leading to neuronal injury (Larochette et al., 1999),
changes of neurotransmitter levels by affecting basal ganglia
(Rodriguez et al., 2003), decreases of superoxide dismutase (Modi
and Flora, 2007) and glutathione-related enzyme activities
(Kannan and Flora, 2004). Recent work has also proposed
detrimental effects of As through disruption of neuron cytoskeletal
network (Giasson et al., 2002; Vahidnia et al., 2008). Our own
research group at Columbia University has also reported lower
scores on intelligence tests in children in relation to As exposure
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(Wasserman et al., 2004, 2007). However, evidence of the effect of
As on working memory of children, a stronger predictor of
academic achievement at later stage in life is not convincing in the
literature. Our group has recently found significant effect of As on
working memory of the Bangladesh children in statistical models
before adjustment for important sociodemographic variables
known to be related to intelligence scores; this association became
non-statistically significant after adjustment (Wasserman et al.,
2011). Thus, we anticipated that the effect of As on a functional
outcome like academic achievement is less likely to be observed at
this age group even though As is considered as a potential
neurotoxicant. In addition, to the best of our knowledge, no
systematic laboratory study has been done to show the effect of As
on different brain compartments that are associated with learning.
We therefore propose that As alters cognitive and neurological
functions but has minimal impact on learning capacity and
academic achievement. Alternatively, As toxicity may show latent
effects on learning.

4.3. Limitations of the study

Our study results may have encountered limited ‘‘geographic
generalizability’’ since the study population may represent only
comparable communities with similar sociodemographic char-
acteristics. Our findings may not be generalizable to children living
in urban communities. The cross-sectional design of this study can
be considered as another limitation as it can hinder cause and
effect inferences. The lack of tests for working memory is another
limitation with respect to interpreting the results.

The design of the prospective educational intervention study
from which this cross-sectional study evolved allowed collection
of urine and water samples for measuring exposures among
participants. Therefore, no Mn biomarker of dose except WMn was
available. Blood manganese (BMn) reflects only recent exposure
and therefore, may not reliably indicate total body burden of Mn
(Bouchard et al., 2011). Although two recent studies reported
associations between hair manganese (HMn) and child intelligence
(Bouchard et al., 2011; Menezes-Filho et al., 2011) a recent study
found significant association in girls only (Riojas-Rodriguez et al.,
2010). Thus literature indicates that defining optimal Mn
biomarker of dose remain an open question.

5. Conclusions

In Bangladesh, the problem of groundwater contaminated with
As has received enormous public health attention because of the
diversity of adverse health effects associated with such exposure. It
is now clear that many of these same regions have excessive
concentrations of Mn in the well water. However, elevated levels of
Mn have received very little attention from the government and
development agencies. The British Geological Survey found 35% of
the samples collected from various parts of the country exceeding
the former WHO Mn guideline of 500 mg/L (BGS/DPHE, 2001). In
Araihazar, where we conducted our study, the proportion of high
Mn wells exceeding the WHO standard is even higher (80%) (Cheng
et al., 2004). Selection of 400 mg/L as a cut off was based on the
current WHO guideline. However, the objective of our statistical
analyses was not to establish whether this value is effectively
protective. We cannot rule out possible effects of WMn on math
achievement below the level of 400 mg/L. In a recent epidemiologi-
cal study in the same region, Hafeman et al. (2007) observed an
elevated mortality risk during first year of life in the infants
exposed to high WMn (>400 mg/L) (OR = 1.8 and 95% CI = 1.2–2.6)
compared to infants with lower exposures. Added to our new
finding of a significant association between WMn and mathemat-
ics achievement, we hope this will motivate stakeholders in
Bangladesh to seriously consider measures for reducing WMn
exposure in the near future. The task may be even more arduous
than reducing WAs exposure. In only 4 of the 26 villages where the
children in this study live was at least one household well
identified with no more than 10 mg/L As and no more than 400 mg/
L Mn. Using arsenic as the only criterion, there is at least one
household well in 16 of the 26 villages that could be shared as a
source of drinking water. An additional complication is that deeper
aquifers, which have successfully been tapped to install deep
community well throughout Araihazar to dramatically lower As
exposure do not necessarily meet the current WHO guideline for
Mn (van Geen et al., 2007).

Elevated groundwater Mn can be a significant source of human
exposure in developing countries like Bangladesh. Even in a
developed country such as the US, where 5.2% of household wells
contain more than 300 mg/L of Mn (DeSimone et al., 2009), a large
number of children may be at risk for deficits in academic
achievement. Our findings add to the growing concern about the
impact of water-borne Mn exposure on children’s health.
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